
Timur Islamoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8947055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of spontaneous de-interpenetration through charged point-point repulsions. CheM, 2022, 8, 225-242.	11.7	11
2	Development of a Metal–Organic Framework/Textile Composite for the Rapid Degradation and Sensitive Detection of the Nerve Agent VX. Chemistry of Materials, 2022, 34, 1269-1277.	6.7	22
3	Investigating the Influence of Hexanuclear Clusters in Isostructural Metal–Organic Frameworks on Toxic Gas Adsorption. ACS Applied Materials & Interfaces, 2022, 14, 3048-3056.	8.0	18
4	Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. Journal of the American Chemical Society, 2022, 144, 2685-2693.	13.7	23
5	Exchange of coordinated carboxylates with azolates as a route to obtain a microporous zinc–azolate framework. Chemical Communications, 2022, 58, 4028-4031.	4.1	2
6	A Catalytically Accessible Polyoxometalate in a Porous Fiber for Degradation of a Mustard Gas Simulant. ACS Applied Materials & Interfaces, 2022, 14, 16687-16693.	8.0	14
7	BODIPY-Based Polymers of Intrinsic Microporosity for the Photocatalytic Detoxification of a Chemical Threat. ACS Applied Materials & amp; Interfaces, 2022, 14, 12596-12605.	8.0	6
8	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
9	Insights into Mass Transfer Barriers in Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 4134-4141.	6.7	16
10	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, .	21.0	82
11	Aggregation-Suppressed Porous Processable Hexa-Zirconium/Polymer Composites for Detoxification of a Nerve Agent Simulant. Chemistry of Materials, 2022, 34, 4983-4991.	6.7	7
12	Interfacial Unit-Dependent Catalytic Activity for CO Oxidation over Cerium Oxysulfate Cluster Assemblies. ACS Applied Materials & Interfaces, 2022, 14, 33515-33524.	8.0	2
13	Hot Press Synthesis of MOF/Textile Composites for Nerve Agent Detoxification. , 2022, 4, 1511-1515.		14
14	Heteroatom-Doped Porous Carbons as Effective Adsorbers for Toxic Industrial Gasses. ACS Applied Materials & Interfaces, 2022, 14, 33173-33180.	8.0	8
15	Separation of Aromatic Hydrocarbons in Porous Materials. Journal of the American Chemical Society, 2022, 144, 12212-12218.	13.7	47
16	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	18.8	140
17	Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.	13.7	28
18	Proton Conductivity via Trapped Water in Phosphonate-Based Metal–Organic Frameworks Synthesized in Aqueous Media. Inorganic Chemistry, 2021, 60, 1086-1091.	4.0	20

#	Article	IF	CITATIONS
19	An Amidoxime-Functionalized Porous Reactive Fiber against Toxic Chemicals. , 2021, 3, 320-326.		13
20	Postsynthetically Modified Polymers of Intrinsic Microporosity (PIMs) for Capturing Toxic Gases. ACS Applied Materials & Interfaces, 2021, 13, 10409-10415.	8.0	30
21	Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 1444-1454.	6.7	56
22	Nanoporous Water-Stable Zr-Based Metal–Organic Frameworks for Water Adsorption. ACS Applied Nano Materials, 2021, 4, 4346-4350.	5.0	22
23	Efficient Removal of Per- and Polyfluoroalkyl Substances from Water with Zirconium-Based Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 3276-3285.	6.7	79
24	Zirconium Metal–Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. ACS Applied Materials & Interfaces, 2021, 13, 22485-22494.	8.0	27
25	Insights into Catalytic Hydrolysis of Organophosphonates at M–OH Sites of Azolate-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9893-9900.	13.7	45
26	Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catalysis, 2021, 1, 721-733.	6.1	49
27	Benign Synthesis and Modification of a Zn–Azolate Metal–Organic Framework for Enhanced Ammonia Uptake and Catalytic Hydrolysis of an Organophosphorus Chemical. , 2021, 3, 1363-1368.		13
28	Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. Journal of the American Chemical Society, 2021, 143, 16777-16785.	13.7	64
29	Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. Cell Reports Physical Science, 2021, 2, 100612.	5.6	10
30	Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal–Organic Frameworks. Environmental Science & Technology, 2021, 55, 15162-15171.	10.0	73
31	Linker Contribution toward Stability of Metal–Organic Frameworks under Ionizing Radiation. Chemistry of Materials, 2021, 33, 9285-9294.	6.7	16
32	Fine-Tuning a Robust Metal–Organic Framework toward Enhanced Clean Energy Gas Storage. Journal of the American Chemical Society, 2021, 143, 18838-18843.	13.7	79
33	Are you using the right probe molecules for assessing the textural properties of metal–organic frameworks?. Journal of Materials Chemistry A, 2021, 10, 157-173.	10.3	33
34	Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. Journal of the American Chemical Society, 2020, 142, 18554-18564.	13.7	88
35	Benign Integration of a Zn-Azolate Metal–Organic Framework onto Textile Fiber for Ammonia Capture. ACS Applied Materials & Interfaces, 2020, 12, 47747-47753.	8.0	37
36	Modulation of crystal growth and structure within cerium-based metal–organic frameworks. CrystEngComm, 2020, 22, 8182-8188.	2.6	17

#	Article	IF	CITATIONS
37	Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates. Nature Communications, 2020, 11, 4010.	12.8	97
38	Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2020, 10, 8995-9005.	11.2	40
39	Catalytic Degradation of an Organophosphorus Agent at Zn–OH Sites in a Metal–Organic Framework. Chemistry of Materials, 2020, 32, 6998-7004.	6.7	32
40	Reactive Porous Polymers for Detoxification of a Chemical Warfare Agent Simulant. Chemistry of Materials, 2020, 32, 9299-9306.	6.7	38
41	Fiber Composites of Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 7120-7140.	6.7	82
42	Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 41157-41166.	8.0	20
43	Supramolecular Porous Assemblies of Atomically Precise Catalytically Active Cerium-Based Clusters. Chemistry of Materials, 2020, 32, 8522-8529.	6.7	23
44	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 44762-44768.	8.0	11
45	Controlling Polymorphism and Orientation of NU-901/NU-1000 Metal–Organic Framework Thin Films. Chemistry of Materials, 2020, 32, 10556-10565.	6.7	23
46	Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	13.7	95
47	Control of the Porosity in Manganese Trimer-Based Metal–Organic Frameworks by Linker Functionalization. Inorganic Chemistry, 2020, 59, 8444-8450.	4.0	11
48	Metal–Organic Frameworks against Toxic Chemicals. Chemical Reviews, 2020, 120, 8130-8160.	47.7	406
49	Precise Control of Cu Nanoparticle Size and Catalytic Activity through Pore Templating in Zr Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 3078-3086.	6.7	21
50	Structural Features of Zirconium-Based Metal–Organic Frameworks Affecting Radiolytic Stability. Industrial & Engineering Chemistry Research, 2020, 59, 7520-7526.	3.7	41
51	Process-level modelling and optimization to evaluate metal–organic frameworks for post-combustion capture of CO ₂ . Molecular Systems Design and Engineering, 2020, 5, 1205-1218.	3.4	37
52	Isothermal Titration Calorimetry to Explore the Parameter Space of Organophosphorus Agrochemical Adsorption in MOFs. Journal of the American Chemical Society, 2020, 142, 12357-12366.	13.7	53
53	Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O ₂ Binding: Design Rules and Ambient Temperature O ₂ Chemisorption in a Cobalt–Triazolate Framework. Journal of the American Chemical Society, 2020, 142, 4317-4328.	13.7	67
54	Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation. Chemistry of Materials, 2020, 32, 3776-3782.	6.7	89

#	Article	IF	CITATIONS
55	Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers. Inorganic Chemistry Frontiers, 2020, 7, 984-990.	6.0	39
56	Zirconium-Based Metal–Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 14702-14720.	8.0	175
57	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	6.8	36
58	Designing Porous Materials to Resist Compression: Mechanical Reinforcement of a Zr-MOF with Structural Linkers. Chemistry of Materials, 2020, 32, 3545-3552.	6.7	36
59	Benzothiazolium-functionalized NU-1000: a versatile material for carbon dioxide adsorption and cyanide luminescence sensing. Journal of Materials Chemistry C, 2020, 8, 7492-7500.	5.5	22
60	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	12.6	429
61	Time-Resolved <i>in Situ</i> Polymorphic Transformation from One 12-Connected Zr-MOF to Another. , 2020, 2, 499-504.		16
62	Uncovering the Role of Metal–Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. Chemistry of Materials, 2020, 32, 4609-4617.	6.7	70
63	Realization of Lithium-Ion Capacitors with Enhanced Energy Density via the Use of Gadolinium Hexacyanocobaltate as a Cathode Material. ACS Applied Materials & Interfaces, 2019, 11, 31799-31805.	8.0	28
64	Mechanistic Study on the Origin of the <i>Trans</i> Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework. Organometallics, 2019, 38, 3466-3473.	2.3	16
65	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Interfaces, 2019, 11, 32090-32096.	8.0	44
66	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	13.7	58
67	Uniform, Binary Functionalization of a Metal–Organic Framework Material. Inorganic Chemistry, 2019, 58, 8906-8909.	4.0	9
68	Modular Synthesis of Highly Porous Zr-MOFs Assembled from Simple Building Blocks for Oxygen Storage. ACS Applied Materials & Interfaces, 2019, 11, 42179-42185.	8.0	17
69	Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts. Applied Catalysis A: General, 2019, 586, 117214.	4.3	96
70	Ammonia Capture within Isoreticular Metal–Organic Frameworks with Rod Secondary Building Units. , 2019, 1, 476-480.		56
71	Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal–Organic Framework Coating on Textile Fiber. Journal of the American Chemical Society, 2019, 141, 15626-15633.	13.7	148
72	Zirconium-Based Metal–Organic Framework with 9-Connected Nodes for Ammonia Capture. ACS Applied Nano Materials, 2019, 2, 6098-6102.	5.0	59

#	Article	IF	CITATIONS
73	Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 162-174.	3.4	179
74	Exploiting ï€â€"ï€ Interactions to Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Interfaces, 2019, 11, 6097-6103.	8.0	96
75	Zirconium-Based Metal–Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. Journal of the American Chemical Society, 2019, 141, 2568-2576.	13.7	105
76	Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical Science, 2019, 10, 1186-1192.	7.4	129
77	Cross-linked porous polyurethane materials featuring dodecaborate clusters as inorganic polyol equivalents. Chemical Communications, 2019, 55, 8852-8855.	4.1	11
78	Facile and Scalable Coating of Metal–Organic Frameworks on Fibrous Substrates by a Coordination Replication Method at Room Temperature. ACS Applied Materials & Interfaces, 2019, 11, 22714-22721.	8.0	42
79	Zirconium Metal–Organic Frameworks for Organic Pollutant Adsorption. Trends in Chemistry, 2019, 1, 304-317.	8.5	147
80	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. Journal of the American Chemical Society, 2019, 141, 8306-8314.	13.7	112
81	Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 15788-15794.	8.0	31
82	Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 5383-5390.	11.2	77
83	Green Synthesis of a Functionalized Zirconium-Based Metal–Organic Framework for Water and Ethanol Adsorption. Inorganics, 2019, 7, 56.	2.7	24
84	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm, 2019, 21, 2409-2415.	2.6	67
85	Synthetic Control of Thorium Polyoxo-Clusters in Metal–Organic Frameworks toward New Thorium-Based Materials. ACS Applied Nano Materials, 2019, 2, 2260-2265.	5.0	34
86	Tuning the Properties of Zr ₆ O ₈ Nodes in the Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. Chemistry of Materials, 2019, 31, 1655-1663.	6.7	97
87	Reticular Access to Highly Porous acs -MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. Journal of the American Chemical Society, 2019, 141, 2900-2905.	13.7	150
88	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 2019, 386, 32-49.	18.8	326
89	Toward Base Heterogenization: A Zirconium Metal–Organic Framework/Dendrimer or Polymer Mixture for Rapid Hydrolysis of a Nerve-Agent Simulant. ACS Applied Nano Materials, 2019, 2, 1005-1008.	5.0	57
90	A Bismuth Metal–Organic Framework as a Contrast Agent for X-ray Computed Tomography. ACS Applied Bio Materials, 2019, 2, 1197-1203.	4.6	68

6

#	Article	IF	CITATIONS
91	Porosity Dependence of Compression and Lattice Rigidity in Metal–Organic Framework Series. Journal of the American Chemical Society, 2019, 141, 4365-4371.	13.7	51
92	Metal–Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States. ACS Applied Materials & Interfaces, 2019, 11, 47822-47829.	8.0	39
93	Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal–Organic Frameworks via Mechanochemistry. Journal of the American Chemical Society, 2019, 141, 19214-19220.	13.7	73
94	Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst. Beilstein Journal of Nanotechnology, 2019, 10, 2422-2427.	2.8	14
95	Integration of Metal–Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. Journal of the American Chemical Society, 2019, 141, 20016-20021.	13.7	106
96	Linker Competition within a Metal–Organic Framework for Topological Insights. Inorganic Chemistry, 2019, 58, 1513-1517.	4.0	29
97	Guest-Dependent Single-Crystal-to-Single-Crystal Phase Transitions in a Two-Dimensional Uranyl-Based Metal–Organic Framework. Crystal Growth and Design, 2019, 19, 506-512.	3.0	29
98	Direct Imaging of Isolated Single-Molecule Magnets in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2997-3005.	13.7	71
99	Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Letters, 2018, 3, 748-754.	17.4	147
100	NanoMOFs: little crystallites for substantial applications. Journal of Materials Chemistry A, 2018, 6, 7338-7350.	10.3	79
101	Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO ₂ capture applications. International Journal of Energy Research, 2018, 42, 2686-2700.	4.5	94
102	Photoexcited Naphthalene Diimide Radical Anion Linking the Nodes of a Metal–Organic Framework: A Heterogeneous Super-reductant. Chemistry of Materials, 2018, 30, 2488-2492.	6.7	37
103	Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nature Communications, 2018, 9, 1378.	12.8	136
104	A porous, electrically conductive hexa-zirconium(<scp>iv</scp>) metal–organic framework. Chemical Science, 2018, 9, 4477-4482.	7.4	158
105	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie - International Edition, 2018, 57, 1949-1953.	13.8	121
106	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie, 2018, 130, 1967-1971.	2.0	24
107	Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs. Chemistry of Materials, 2018, 30, 1277-1284.	6.7	125
108	Revisiting the structural homogeneity of NU-1000, a Zr-based metal–organic framework. CrystEngComm, 2018, 20, 5913-5918.	2.6	136

#	Article	IF	CITATIONS
109	Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation. Chemistry of Materials, 2018, 30, 2193-2197.	6.7	80
110	Synthesis and functionalization of phase-pure NU-901 for enhanced CO ₂ adsorption: the influence of a zirconium salt and modulator on the topology and phase purity. CrystEngComm, 2018, 20, 7066-7070.	2.6	43
111	New Talent 2018. CrystEngComm, 2018, 20, 5870-5871.	2.6	Ο
112	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13246-13251.	4.0	80
113	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal–Organic Frameworks by Water-Assisted Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15841-15849.	6.7	120
114	Phosphonates Meet Metalâ^'Organic Frameworks: Towards CO 2 Adsorption. Israel Journal of Chemistry, 2018, 58, 1164-1170.	2.3	4
115	Rational Design of Pore Size and Functionality in a Series of Isoreticular Zwitterionic Metal–Organic Frameworks. Chemistry of Materials, 2018, 30, 8332-8342.	6.7	28
116	Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 2018, 20, 6140-6145.	2.6	33
117	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	13.7	158
118	Metal–organic frameworks as platforms for the nanostructuration of single-molecule magnets: new insights from HRTEM. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a348-a348.	0.1	0
119	Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chemistry of Materials, 2017, 29, 1357-1361.	6.7	346
120	Cerium(IV) vs Zirconium(IV) Based Metal–Organic Frameworks for Detoxification of a Nerve Agent. Chemistry of Materials, 2017, 29, 2672-2675.	6.7	135
121	Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Accounts of Chemical Research, 2017, 50, 805-813.	15.6	644
122	Improvement of Methane–Framework Interaction by Controlling Pore Size and Functionality of Pillared MOFs. Inorganic Chemistry, 2017, 56, 2581-2588.	4.0	59
123	Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues. ACS Applied Materials & Interfaces, 2017, 9, 19535-19540.	8.0	63
124	Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000. Industrial & Engineering Chemistry Research, 2017, 56, 7141-7148.	3.7	95
125	Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chemical Society Reviews, 2017, 46, 3357-3385.	38.1	707
126	Noninvasive Substitution of K ⁺ Sites in Cyclodextrin Metal–Organic Frameworks by Li ⁺ lons. Journal of the American Chemical Society, 2017, 139, 11020-11023.	13.7	79

#	Article	IF	CITATIONS
127	Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 24555-24560.	8.0	112
128	Benzothiazole- and benzoxazole-linked porous polymers for carbon dioxide storage and separation. Journal of Materials Chemistry A, 2017, 5, 258-265.	10.3	87
129	Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers. ACS Applied Materials & Interfaces, 2016, 8, 14648-14655.	8.0	76
130	A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO ₂ sorbents. Journal of Materials Chemistry A, 2016, 4, 14693-14702.	10.3	90
131	Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr ₆ Nodes of UiO-66 and NU-1000. Journal of the American Chemical Society, 2016, 138, 15189-15196.	13.7	155
132	Combining solvent-assisted linker exchange and transmetallation strategies to obtain a new non-catenated nickel (II) pillared-paddlewheel MOF. Inorganic Chemistry Communication, 2016, 67, 60-63.	3.9	13
133	Systematic Postsynthetic Modification of Nanoporous Organic Frameworks for Enhanced CO ₂ Capture from Flue Gas and Landfill Gas. Journal of Physical Chemistry C, 2016, 120, 2592-2599.	3.1	69
134	An ultra-microporous organic polymer for high performance carbon dioxide capture and separation. Chemical Communications, 2015, 51, 13393-13396.	4.1	71
135	Effect of Acid-Catalyzed Formation Rates of Benzimidazole-Linked Polymers on Porosity and Selective CO ₂ Capture from Gas Mixtures. Environmental Science & Technology, 2015, 49, 4715-4723.	10.0	41
136	Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation. Journal of Materials Chemistry A, 2015, 3, 20586-20594.	10.3	84
137	Highly Selective CO ₂ Capture by Triazine-Based Benzimidazole-Linked Polymers. Macromolecules, 2014, 47, 8328-8334.	4.8	141
138	Copper(I)-Catalyzed Synthesis of Nanoporous Azo-Linked Polymers: Impact of Textural Properties on Gas Storage and Selective Carbon Dioxide Capture. Chemistry of Materials, 2014, 26, 1385-1392.	6.7	276
139	Application of pyrene-derived benzimidazole-linked polymers to CO ₂ separation under pressure and vacuum swing adsorption settings. Journal of Materials Chemistry A, 2014, 2, 12492-12500.	10.3	85
140	Impact of post-synthesis modification of nanoporous organic frameworks on small gas uptake and selective CO2 capture. Journal of Materials Chemistry A, 2013, 1, 10259.	10.3	134
141	Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm, 2013, 15, 1524-1527.	2.6	131
142	Rapid Quantification of Mass Transfer Barriers in Metal–Organic Framework Crystals. Chemistry of Materials, 0, , .	6.7	10
143	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie, 0, , .	2.0	0