List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8946406/publications.pdf Version: 2024-02-01

Ριίον Κλιίο Μλτηλοιι

#	Article	IF	CITATIONS
1	Binary polymer systems for biomedical applications. International Materials Reviews, 2023, 68, 184-224.	19.3	7
2	Exploiting the antiviral potential of intermetallic nanoparticles. Emergent Materials, 2022, 5, 1251-1260.	5.7	6
3	Severe Acute Respiratory Syndrome Type 2 ausing Coronavirus: Variants and Preventive Strategies. Advanced Science, 2022, 9, e2104495.	11.2	16
4	Facile One-Pot Method for All Aqueous Green Formation of Biocompatible Silk Fibroin-Poly(Ethylene) Tj ETQq0 0 0 1290-1300.) rgBT /Ov 5.2	erlock 10 Tf 11
5	Manufacturing Cyclodextrin Fibers Using Water. Macromolecular Materials and Engineering, 2022, 307, .	3.6	9
6	Optimised release of tetracycline hydrochloride from core-sheath fibres produced by pressurised gyration. Journal of Drug Delivery Science and Technology, 2022, 72, 103359.	3.0	7
7	Nozzleâ€Pressurized Gyration: A Novel Fiber Manufacturing Process. Macromolecular Materials and Engineering, 2022, 307, .	3.6	9
8	The effect of solvent and pressure on polycaprolactone solutions for particle and fibre formation. European Polymer Journal, 2022, 173, 111300.	5.4	13
9	Sustainable Macromolecular Materials and Engineering. Macromolecular Materials and Engineering, 2022, 307, .	3.6	2
10	Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study. Materials Science and Engineering C, 2021, 119, 111586.	7.3	54
11	Nextâ€generation Antimicrobial Peptides (AMPs) incorporated nanofibre wound dressings. Medical Devices & Sensors, 2021, 4, e10144.	2.7	10
12	Perspective: Covid-19; emerging strategies and material technologies. Emergent Materials, 2021, 4, 3-8.	5.7	10
13	Alleviating the toxicity concerns of antibacterial cinnamonâ€polycaprolactone biomaterials for healthcareâ€related biomedical applications. MedComm, 2021, 2, 236-246.	7.2	17
14	Coâ€Axial Gyroâ€Spinning of PCL/PVA/HA Coreâ€Sheath Fibrous Scaffolds for Bone Tissue Engineering. Macromolecular Bioscience, 2021, 21, e2100177.	4.1	18
15	Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS Applied Materials & Interfaces, 2021, 13, 32624-32639.	8.0	27
16	Vitamin D3/vitamin K2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/β-catenin pathway. International Journal of Biological Macromolecules, 2021, 190, 244-258.	7.5	14
17	Surface interactions and viability of coronaviruses. Journal of the Royal Society Interface, 2021, 18, 20200798.	3.4	31
18	Porous Graphene Composite Polymer Fibres. Polymers, 2021, 13, 76.	4.5	10

#	Article	IF	CITATIONS
19	Utilising Co-Axial Electrospinning as a Taste-Masking Technology for Paediatric Drug Delivery. Pharmaceutics, 2021, 13, 1665.	4.5	11
20	Optimization of Process ontrol Parameters for the Diameter of Electrospun Hydrophilic Polymeric Composite Nanofibers. Macromolecular Materials and Engineering, 2021, 306, 2100471.	3.6	4
21	Metal-based nanoparticles for combating antibiotic resistance. Applied Physics Reviews, 2021, 8, .	11.3	21
22	Core–sheath polymer nanofiber formation by the simultaneous application of rotation and pressure in a novel purpose-designed vessel. Applied Physics Reviews, 2021, 8, .	11.3	20
23	Self-assembled micro-stripe patterning of sessile polymeric nanofluid droplets. Journal of Colloid and Interface Science, 2020, 561, 470-480.	9.4	10
24	A novel treatment strategy for preterm birth: Intra-vaginal progesterone-loaded fibrous patches. International Journal of Pharmaceutics, 2020, 588, 119782.	5.2	31
25	Rapid and label-free detection of COVID-19 using coherent anti-Stokes Raman scattering microscopy. MRS Communications, 2020, 10, 566-572.	1.8	13
26	Current methodologies and approaches for the formation of core–sheath polymer fibers for biomedical applications. Applied Physics Reviews, 2020, 7, .	11.3	56
27	Generation of Core–Sheath Polymer Nanofibers by Pressurised Gyration. Polymers, 2020, 12, 1709.	4.5	39
28	COVIDâ€19: Facemasks, healthcare policies and risk factors in the crucial initial months of a global pandemic. Medical Devices & Sensors, 2020, 3, e10120.	2.7	7
29	Effectiveness of Oil-Layered Albumin Microbubbles Produced Using Microfluidic T-Junctions in Series for In Vitro Inhibition of Tumor Cells. Langmuir, 2020, 36, 11429-11441.	3.5	15
30	Microstructure of fibres pressure-spun from polyacrylonitrile–graphene oxide composite mixtures. Composites Science and Technology, 2020, 197, 108214.	7.8	6
31	The comparision of glybenclamide and metformin-loaded bacterial cellulose/gelatin nanofibres produced by a portable electrohydrodynamic gun for diabetic wound healing. European Polymer Journal, 2020, 134, 109844.	5.4	35
32	Microstructure and antibacterial efficacy of graphene oxide nanocomposite fibres. Journal of Colloid and Interface Science, 2020, 571, 239-252.	9.4	67
33	Comparative Study of the Antimicrobial Effects of Tungsten Nanoparticles and Tungsten Nanocomposite Fibres on Hospital Acquired Bacterial and Viral Pathogens. Nanomaterials, 2020, 10, 1017.	4.1	38
34	Viral filtration using carbonâ€based materials. Medical Devices & Sensors, 2020, 3, e10107.	2.7	27
35	Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: an <i>in vitro</i> and <i>in vivo</i> comparison study. Journal of the Royal Society Interface, 2020, 17, 20190712.	3.4	65
36	A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application. Pharmaceutics, 2020, 12, 373.	4.5	5

#	Article	IF	CITATIONS
37	Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnology Advances, 2020, 41, 107549.	11.7	144
38	Fiber Forming Capability of Binary and Ternary Compositions in the Polymer System: Bacterial Cellulose–Polycaprolactone–Polylactic Acid. Polymers, 2019, 11, 1148.	4.5	26
39	Electrosprayed microparticles: a novel drug delivery method. Expert Opinion on Drug Delivery, 2019, 16, 895-901.	5.0	16
40	Preparation of poly(glycerol sebacate) fibers for tissue engineering applications. European Polymer Journal, 2019, 121, 109297.	5.4	30
41	Experimental and theoretical investigation of the fluid behavior during polymeric fiber formation with and without pressure. Applied Physics Reviews, 2019, 6, 041401.	11.3	94
42	Biofabrication of Gelatin Tissue Scaffolds with Uniform Pore Size via Microbubble Assembly. Macromolecular Materials and Engineering, 2019, 304, 1900394.	3.6	7
43	Empirical modelling and optimization of pressure-coupled infusion gyration parameters for the nanofibre fabrication. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190008.	2.1	6
44	Boron nitride nanoscrolls: Structure, synthesis, and applications. Applied Physics Reviews, 2019, 6, .	11.3	18
45	Electrospinning Optimization of Eudragit E PO with and without Chlorpheniramine Maleate Using a Design of Experiment Approach. Molecular Pharmaceutics, 2019, 16, 2557-2568.	4.6	22
46	Fiber Formation from Silk Fibroin Using Pressurized Gyration. Macromolecular Materials and Engineering, 2019, 304, 1800577.	3.6	14
47	Antiâ€fungal bandages containing cinnamon extract. International Wound Journal, 2019, 16, 730-736.	2.9	30
48	Coâ€Culture of Keratinocyteâ€ <i>Staphylococcus aureus</i> on Cuâ€Agâ€Zn/CuO and Cuâ€Agâ€W Nanoparticl Loaded Bacterial Cellulose:PMMA Bandages. Macromolecular Materials and Engineering, 2019, 304, 1800537.	e 3.6	30
49	Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomaterialia, 2018, 71, 225-234.	8.3	47
50	A Comparison of Electricâ€Fieldâ€Driven and Pressureâ€Driven Fiber Generation Methods for Drug Delivery. Macromolecular Materials and Engineering, 2018, 303, 1700577.	3.6	32
51	An Inexpensive, Portable Device for Pointâ€ofâ€Need Generation of Silverâ€Nanoparticle Doped Cellulose Acetate Nanofibers for Advanced Wound Dressing. Macromolecular Materials and Engineering, 2018, 303, 1700586.	3.6	18
52	Nanocomposites: suitable alternatives as antimicrobial agents. Nanotechnology, 2018, 29, 282001.	2.6	63
53	Polymer–Magnetic Composite Fibers for Remote-Controlled Drug Release. ACS Applied Materials & Interfaces, 2018, 10, 15524-15531.	8.0	61
54	The development of progesterone-loaded nanofibers using pressurized gyration: A novel approach to vaginal delivery for the prevention of pre-term birth. International Journal of Pharmaceutics, 2018, 540, 31-39.	5.2	38

#	Article	IF	CITATIONS
55	Novel Making of Bacterial Cellulose Blended Polymeric Fiber Bandages. Macromolecular Materials and Engineering, 2018, 303, 1700607.	3.6	40
56	The biomedical applications of graphene. Interface Focus, 2018, 8, 20180006.	3.0	5
57	Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells. Journal of the Royal Society Interface, 2018, 15, 20170928.	3.4	11
58	Mucoadhesion of Progesterone-Loaded Drug Delivery Nanofiber Constructs. ACS Applied Materials & Interfaces, 2018, 10, 13381-13389.	8.0	51
59	Antimicrobial activity of telluriumâ€loaded polymeric fiber meshes. Journal of Applied Polymer Science, 2018, 135, 46368.	2.6	34
60	Latest developments in innovative manufacturing to combine nanotechnology with healthcare. Nanomedicine, 2018, 13, 5-8.	3.3	19
61	Novel Preparation of Monodisperse Microbubbles by Integrating Oscillating Electric Fields with Microfluidics. Micromachines, 2018, 9, 497.	2.9	12
62	Honeycomb-like PLGA- <i>b</i> -PEG Structure Creation with T-Junction Microdroplets. Langmuir, 2018, 34, 7989-7997.	3.5	18
63	Process Modeling for the Fiber Diameter of Polymer, Spun by Pressure-Coupled Infusion Gyration. ACS Omega, 2018, 3, 5470-5479.	3.5	14
64	The effect of graphene–poly(methyl methacrylate) fibres on microbial growth. Interface Focus, 2018, 8, 20170058.	3.0	50
65	Developments in Pressurized Gyration for the Mass Production of Polymeric Fibers. Macromolecular Materials and Engineering, 2018, 303, 1800218.	3.6	111
66	A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS ONE, 2018, 13, e0192093.	2.5	74
67	Highly Stretchable and Highly Resilient Polymer–Clay Nanocomposite Hydrogels with Low Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 22223-22234.	8.0	65
68	Simultaneous Application of Pressure-Infusion-Gyration to Generate Polymeric Nanofibers. Macromolecular Materials and Engineering, 2017, 302, 1600564.	3.6	39
69	Evolution of self-generating porous microstructures in polyacrylonitrile-cellulose acetate blend fibres. Materials and Design, 2017, 134, 259-271.	7.0	11
70	New Generation of Tunable Bioactive Shape Memory Mats Integrated with Genetically Engineered Proteins. Macromolecular Bioscience, 2017, 17, 1600270.	4.1	20
71	Evolution of Surface Nanopores in Pressurised Gyrospun Polymeric Microfibers. Polymers, 2017, 9, 508.	4.5	19
72	Characterisation of the Chemical Composition and Structural Features of Novel Antimicrobial Nanoparticles. Nanomaterials, 2017, 7, 152.	4.1	13

#	Article	IF	CITATIONS
73	Making Nonwoven Fibrous Poly(ε aprolactone) Constructs for Antimicrobial and Tissue Engineering Applications by Pressurized Melt Gyration. Macromolecular Materials and Engineering, 2016, 301, 922-934.	3.6	42
74	Novel Preparation, Microstructure, and Properties of Polyacrylonitrile-Based Carbon Nanofiber–Graphene Nanoplatelet Materials. ACS Omega, 2016, 1, 202-211.	3.5	28
75	Tailoring the surface of polymeric nanofibres generated by pressurised gyration. Surface Innovations, 2016, 4, 167-178.	2.3	14
76	Beads, beaded-fibres and fibres: Tailoring the morphology of poly(caprolactone) using pressurised gyration. Materials Science and Engineering C, 2016, 69, 1373-1382.	7.3	33
77	Development and Characterization of Amorphous Nanofiber Drug Dispersions Prepared Using Pressurized Gyration. Molecular Pharmaceutics, 2015, 12, 3851-3861.	4.6	35
78	Coupling Infusion and Gyration for the Nanoscale Assembly of Functional Polymer Nanofibers Integrated with Genetically Engineered Proteins. Macromolecular Rapid Communications, 2015, 36, 1322-1328.	3.9	50
79	Solubility–spinnability map and model for the preparation of fibres of polyethylene (terephthalate) using gyration and pressure. Chemical Engineering Journal, 2015, 280, 344-353.	12.7	57
80	Formation of Protein and Protein–Gold Nanoparticle Stabilized Microbubbles by Pressurized Gyration. Langmuir, 2015, 31, 659-666.	3.5	65
81	Making nanofibres of mucoadhesive polymer blends for vaginal therapies. European Polymer Journal, 2015, 70, 186-196.	5.4	38
82	Facile one-pot formation of ceramic fibres from preceramic polymers by pressurised gyration. Ceramics International, 2015, 41, 6067-6073.	4.8	24
83	Antibacterial Activity and Biosensing of PVA-Lysozyme Microbubbles Formed by Pressurized Gyration. Langmuir, 2015, 31, 9771-9780.	3.5	42
84	Preparation of Multilayered Polymeric Structures Using a Novel Fourâ€Needle Coaxial Electrohydrodynamic Device. Macromolecular Rapid Communications, 2014, 35, 618-623.	3.9	70
85	Effect of humidity on the generation and control of the morphology of honeycomb-like polymeric structures by electrospinning. European Polymer Journal, 2014, 61, 72-82.	5.4	11
86	Novel encapsulation systems and processes for overcoming the challenges of polypharmacy. Current Opinion in Pharmacology, 2014, 18, 28-34.	3.5	11
87	Generation of poly(N-vinylpyrrolidone) nanofibres using pressurised gyration. Materials Science and Engineering C, 2014, 39, 168-176.	7.3	42
88	Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing. Lab on A Chip, 2014, 14, 2437-2446.	6.0	49
89	Forming of Polymer Nanofibers by a Pressurised Gyration Process. Macromolecular Rapid Communications, 2013, 34, 1134-1139.	3.9	188
90	Electrohydrodynamic Bubbling: An Alternative Route to Fabricate Porous Structures of Silk Fibroin Based Materials. Biomacromolecules, 2013, 14, 1412-1422.	5.4	35

#	Article	IF	CITATIONS
91	Fabrication of Biomaterials via Controlled Protein Bubble Generation and Manipulation. Biomacromolecules, 2011, 12, 4291-4300.	5.4	34