Takahiro Masuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8946378/publications.pdf

Version: 2024-02-01

40 papers 4,926 citations

30 h-index 276875 41 g-index

48 all docs 48 docs citations

48 times ranked

5823 citing authors

#	Article	IF	CITATIONS
1	Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature, 2019, 566, 388-392.	27.8	853
2	Microglia Heterogeneity in the Single-Cell Era. Cell Reports, 2020, 30, 1271-1281.	6.4	421
3	Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nature Neuroscience, 2019, 22, 2098-2110.	14.8	296
4	Macrophages at CNS interfaces: ontogeny and function in health andÂdisease. Nature Reviews Neuroscience, 2019, 20, 547-562.	10.2	250
5	IRF8 Is a Critical Transcription Factor for Transforming Microglia into a Reactive Phenotype. Cell Reports, 2012, 1, 334-340.	6.4	249
6	IFN- \hat{I}^3 receptor signaling mediates spinal microglia activation driving neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8032-8037.	7.1	245
7	Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation. Annual Review of Immunology, 2021, 39, 251-277.	21.8	228
8	Novel Hexb-based tools for studying microglia in the CNS. Nature Immunology, 2020, 21, 802-815.	14.5	186
9	Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain. Nature Communications, 2014, 5, 3771.	12.8	155
10	Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nature Neuroscience, 2020, 23, 676-689.	14.8	148
11	Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO Journal, 2011, 30, 1864-1873.	7.8	146
12	Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nature Communications, 2016, 7, 12529.	12.8	142
13	A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves. Immunity, 2019, 50, 1482-1497.e7.	14.3	141
14	Silencing of $TGF\hat{l}^2$ signalling in microglia results in impaired homeostasis. Nature Communications, 2018, 9, 4011.	12.8	125
15	Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature, 2022, 604, 740-748.	27.8	107
16	P2X4 receptors and neuropathic pain. Frontiers in Cellular Neuroscience, 2013, 7, 191.	3.7	106
17	Fibronectin/integrin system is involved in P2X ₄ receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia, 2008, 56, 579-585.	4.9	105
18	Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nature Communications, 2016, 7, 13102.	12.8	105

#	Article	IF	Citations
19	Microglial Regulation of Neuropathic Pain. Journal of Pharmacological Sciences, 2013, 121, 89-94.	2.5	102
20	Lyn tyrosine kinase is required for P2X ₄ receptor upregulation and neuropathic pain after peripheral nerve injury. Glia, 2008, 56, 50-58.	4.9	99
21	A spinal microglia population involved in remitting and relapsing neuropathic pain. Science, 2022, 376, 86-90.	12.6	98
22	A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Scientific Reports, 2016, 6, 32461.	3.3	95
23	Chemokine (C-C motif) Receptor 5 Is an Important Pathological Regulator in the Development and Maintenance of Neuropathic Pain. Anesthesiology, 2014, 120, 1491-1503.	2.5	61
24	Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Science Advances, 2019, 5, eaav5086.	10.3	60
25	Mapping the origin and fate of myeloid cells in distinct compartments of the eye by singleâ€eell profiling. EMBO Journal, 2021, 40, e105123.	7.8	60
26	Comparative analysis of CreER transgenic mice for the study of brain macrophages: A case study. European Journal of Immunology, 2020, 50, 353-362.	2.9	53
27	Diet-dependent regulation of TGF^2 impairs reparative innate immune responses after demyelination. Nature Metabolism, 2021, 3, 211-227.	11.9	41
28	Microglia: A Unique Versatile Cell in the Central Nervous System. ACS Chemical Neuroscience, 2016, 7, 428-434.	3.5	39
29	Transcription factor IRF1 is responsible for IRF8-mediated IL- $1\hat{l}^2$ expression in reactive microglia. Journal of Pharmacological Sciences, 2015, 128, 216-220.	2.5	38
30	Transcription factor MafB contributes to the activation of spinal microglia underlying neuropathic pain development. Glia, 2019, 67, 729-740.	4.9	37
31	Reduced pain behaviors and extracellular signalâ€related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking plateletâ€activating factor receptor. Journal of Neurochemistry, 2007, 102, 1658-1668.	3.9	29
32	IRF8 is a transcriptional determinant for microglial motility. Purinergic Signalling, 2014, 10, 515-521.	2.2	27
33	Interferon Regulatory Factor 8 Expressed in Microglia Contributes to Tactile Allodynia Induced by Repeated Cold Stress in Rodents. Journal of Pharmacological Sciences, 2014, 126, 172-176.	2.5	22
34	Lentiviral Transduction of Cultured Microglia. Methods in Molecular Biology, 2013, 1041, 63-67.	0.9	10
35	Intramuscular hemodynamics in bilateral erector spinae muscles in symmetrical and asymmetrical postures with and without loading. Clinical Biomechanics, 2006, 21, 245-253.	1.2	5
36	Transcriptional regulation in microglia and neuropathic pain. Pain Management, 2016, 6, 91-94.	1.5	5

3

#	Article	IF	CITATIONS
37	Spinal Cord is the Primary Site of Action of the Cannabinoid CB2 Receptor Agonist JWH133 that Suppresses Neuropathic Pain: Possible Involvement of Microglia. Open Pain Journal, 2014, 7, 1-8.	0.4	2
38	Peripheral Nerve Injury: a Mouse Model of Neuropathic Pain. Bio-protocol, 2017, 7, e2252.	0.4	2
39	Intrathecal Infusion of Microglia Cells. Methods in Molecular Biology, 2013, 1041, 291-294.	0.9	1
40	Interferon regulatory factor-8 is a transcription factor inducing expression of genes encoding pain-related molecules in spinal microglia. Neuroscience Research, 2010, 68, e80.	1.9	0