Crk Consortium

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/894551/publications.pdf Version: 2024-02-01

	44069	37204
10,219	48	96
citations	h-index	g-index
122	122	9821
docs citations	times ranked	citing authors
	10,219 citations 122 docs citations	10,21948citationsh-index122122docs citationstimes ranked

#	Article	IF	CITATIONS
1	Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal, 1997, 11, 1187-1194.	5.7	2,406
2	Plant chitinases. Plant Journal, 1993, 3, 31-40.	5.7	737
3	14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends in Biochemical Sciences, 1992, 17, 498-501.	7.5	478
4	Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 2008, 121, 267-280.	1.7	262
5	Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytologist, 2007, 174, 637-647.	7.3	220
6	The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase Plant Cell, 1997, 9, 1805-1814.	6.6	218
7	Plant gene expression in response to pathogens. Plant Molecular Biology, 1987, 9, 389-410.	3.9	215
8	A ceratoâ€platanin protein SsCP1 targets plant PR1 and contributes to virulence of <i>Sclerotinia sclerotiorum</i> . New Phytologist, 2018, 217, 739-755.	7.3	211
9	Transcriptional regulation by an NAC (NAM–ATAF1,2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards <i>Blumeria graminis</i> f. sp. <i>hordei</i> in Arabidopsis. Plant Journal, 2008, 56, 867-880.	5.7	210
10	Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant Journal, 1995, 8, 139-145.	5.7	192
11	The ash dieback crisis: genetic variation in resistance can prove a longâ€ŧerm solution. Plant Pathology, 2014, 63, 485-499.	2.4	191
12	14-3-3 proteins and the response to abiotic and biotic stress. Plant Molecular Biology, 2002, 50, 1031-1039.	3.9	175
13	Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress. PLoS Genetics, 2015, 11, e1005373.	3.5	167
14	Engineering Pathogen Resistance in Crop Plants: Current Trends and Future Prospects. Annual Review of Phytopathology, 2010, 48, 269-291.	7.8	164
15	The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology, 2002, 3, 135-144.	4.2	163
16	Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology and Diversity, 2018, 11, 555-567.	2.4	159
17	Fusarium Head Blight of Cereals in Denmark: Species Complex and Related Mycotoxins. Phytopathology, 2011, 101, 960-969.	2.2	152
18	Insights on the Evolution of Mycoparasitism from the Genome of Clonostachys rosea. Genome Biology and Evolution, 2015, 7, 465-480.	2.5	150

#	Article	IF	CITATIONS
19	Molecular Characterization of the Oxalate Oxidase Involved in the Response of Barley to the Powdery Mildew Fungus1. Plant Physiology, 1998, 117, 33-41.	4.8	139
20	The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 2007, 65, 137-150.	3.9	136
21	An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Molecular Biology, 1998, 36, 101-112.	3.9	134
22	Effects of Â-1,3-glucan from Septoria tritici on structural defence responses in wheat. Journal of Experimental Botany, 2009, 60, 4287-4300.	4.8	124
23	14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Molecular Biology, 1999, 40, 545-554.	3.9	122
24	Interaction of barley powdery mildew effector candidate <scp>CSEP0055</scp> with the defence protein <scp>PR17c</scp> . Molecular Plant Pathology, 2012, 13, 1110-1119.	4.2	115
25	A 2-kb Mycovirus Converts a Pathogenic Fungus into a Beneficial Endophyte for Brassica Protection and Yield Enhancement. Molecular Plant, 2020, 13, 1420-1433.	8.3	113
26	A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Molecular Biology, 1998, 37, 849-857.	3.9	105
27	Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum. Fungal Biology, 2014, 118, 364-373.	2.5	99
28	cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis. Physiological and Molecular Plant Pathology, 1992, 40, 395-409.	2.5	98
29	Differential gene transcript accumulation in barley leaf epidermis and mesophyll in response to attack byBlumeria graminisf.sp.hordei(syn.Erysiphe graminisf.sp.hordei). Physiological and Molecular Plant Pathology, 1997, 51, 85-97.	2.5	93
30	Purification, Characterization, and Molecular Cloning of Basic PR-1-Type Pathogenesis-Related Proteins from Barley. Molecular Plant-Microbe Interactions, 1994, 7, 267.	2.6	88
31	Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era. Frontiers in Plant Science, 2013, 4, 37.	3.6	84
32	Secretomics identifies <i>Fusarium graminearum</i> proteins involved in the interaction with barley and wheat. Molecular Plant Pathology, 2012, 13, 445-453.	4.2	83
33	Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control, 2020, 144, 104222.	3.0	82
34	Biological control of plant diseases – What has been achieved and what is the direction?. Plant Pathology, 2022, 71, 1024-1047.	2.4	78
35	A pathogen-induced gene of barley encodes a HSP90 homologue showing striking similarity to vertebrate forms resident in the endoplasmic reticulum. Plant Molecular Biology, 1993, 21, 1097-1108.	3.9	77
36	What are the prospects for genetically engineered, disease resistant plants?. European Journal of Plant Pathology, 2008, 121, 217-231.	1.7	77

#	Article	IF	CITATIONS
37	Cloning and characterization of a pathogen-induced chitinase in Brassica napus. Plant Molecular Biology, 1992, 20, 277-287.	3.9	75
38	A flavonoid 7-O-methyltransferase is expressed in barley leaves in response to pathogen attack. Plant Molecular Biology, 1998, 36, 219-227.	3.9	70
39	Nar-1 and Nar-2, Two Loci Required for Mla 12 -Specified Race-Specific Resistance to Powdery Mildew in Barley. Plant Cell, 1994, 6, 983.	6.6	65
40	Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. Science of the Total Environment, 2021, 759, 143804.	8.0	64
41	Regulation of basal resistance by a powdery mildewâ€induced cysteineâ€rich receptorâ€like protein kinase in barley. Molecular Plant Pathology, 2012, 13, 135-147.	4.2	62
42	Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea. BMC Genomics, 2014, 15, 55.	2.8	61
43	Fusarium Head Blight Modifies Fungal Endophytic Communities During Infection of Wheat Spikes. Microbial Ecology, 2020, 79, 397-408.	2.8	56
44	Analysis of early events in the interaction between <i>Fusarium graminearum</i> and the susceptible barley (<i>Hordeum vulgare</i>) cultivar Scarlett. Proteomics, 2010, 10, 3748-3755.	2.2	55
45	The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Molecular Biology, 2013, 83, 577-590.	3.9	54
46	Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control. Fungal Biology, 2018, 122, 110-120.	2.5	54
47	A pathogenâ€induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant Journal, 1992, 2, 815-820.	5.7	53
48	Cell wall appositions: the first line of defence. Journal of Experimental Botany, 2009, 60, 351-352.	4.8	52
49	Gene expression in Brassica campestris showing a hypersensitive response to the incompatible pathogen Xanthomonas campestris pv. vitians. Plant Molecular Biology, 1987, 8, 405-414.	3.9	50
50	Do 14-3-3 proteins and plasma membrane H+-AtPases interact in the barley epidermis in response to the barley powdery mildew fungus?. Plant Molecular Biology, 2002, 49, 137-147.	3.9	50
51	Investigation of the effect of nitrogen on severity of Fusarium Head Blight in barley. Journal of Proteomics, 2010, 73, 743-752.	2.4	49
52	Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley-powdery mildew interaction. Plant Journal, 2000, 23, 245-254.	5.7	46
53	Induced resistance in sugar beet against Cercospora beticola: induction by dichloroisonicotinic acid is independent of chitinase and β-1,3-glucanase transcript accumulation. Physiological and Molecular Plant Pathology, 1994, 45, 89-99.	2.5	42
54	A simple model based on known plant defence reactions is sufficient to explain most aspects of nodulation. Journal of Experimental Botany, 1995, 46, 1-18.	4.8	42

#	Article	IF	CITATIONS
55	A putative O-methyltransferase from barley is induced by fungal pathogens and UV light. Plant Molecular Biology, 1994, 26, 1797-1806.	3.9	39
56	Expression of a defence-related intercellular barley peroxidase in transgenic tobacco. Plant Science, 1997, 122, 173-182.	3.6	38
57	Induction, purification and characterization of chitinase isolated from pea leaves inoculated with Ascochyta pisi. Planta, 1991, 184, 24-9.	3.2	35
58	Ethanol increases sensitivity of oxalate oxidase assays and facilitates direct activity staining in SDS gels. Plant Molecular Biology Reporter, 1996, 14, 266-272.	1.8	35
59	Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiology Ecology, 2020, 96, .	2.7	31
60	Dimerization Characteristics of the 94-kDa Glucose-Regulated Protein. Journal of Biochemistry, 1996, 120, 249-256.	1.7	30
61	Transgenic approaches for plant disease control: Status and prospects 2021. Plant Pathology, 2022, 71, 207-225.	2.4	30
62	In vitro characterization of the Ac locus in white clover (Trifolium repens L.). Archives of Biochemistry and Biophysics, 1982, 218, 38-45.	3.0	29
63	Searching for Novel Fungal Biological Control Agents for Plant Disease Control Among Endophytes. , 2019, , 25-51.		29
64	Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph: Rhizoctonia sp.). Tree Physiology, 2005, 25, 1533-1543.	3.1	28
65	Developmental and Physiological Studies on the Cyanogenic Glucosides of White Clover,Trifolium repensL. Journal of Experimental Botany, 1982, 33, 154-161.	4.8	27
66	The Barley/Blumeria (Syn. Erysiphe) Graminis Interaction. , 2000, , 77-100.		25
67	Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach. Biological Control, 2020, 141, 104128.	3.0	25
68	Accumulation of defence-related transcripts and cloning of a chitinase mRNA from pea leaves (Pisum) Tj ETQq() 0 0 ₃ gBT /(Overlock 10 Ti
69	Evidence that linamarin and lotaustralin, the two cyanogenic glucosides of Trifolium repens L., are synthesized by a single set of microsomal enzymes controlled by the Ac/ac locus. Plant Science Letters, 1984, 34, 119-125.	1.8	22
70	Accumulation of a putative guanidine compound in relation to other early defence reactions in epidermal cells of barley and wheat exhibiting resistance to Erysiphe graminis f.sp. hordei. Physiological and Molecular Plant Pathology, 1994, 45, 469-484.	2.5	21
71	Mechanical transmission of maize rayado fino marafivirus (MRFV) to maize and barley by means of the vascular puncture technique. Plant Pathology, 2000, 49, 302-307.	2.4	21
72	Early induction of new mRNAs accompanies the resistance reaction of barley to the wheat pathogen, Erysiphe graminis f.sp. tritici. Physiological and Molecular Plant Pathology, 1990, 36, 471-481.	2.5	20

#	Article	IF	CITATIONS
73	Disease-Reducing Effect of Chromolaena odorata Extract on Sheath Blight and Other Rice Diseases. Phytopathology, 2011, 101, 231-240.	2.2	20
74	Post-translational modification of barley 14-3-3A is isoform-specific and involves removal of the hypervariable C-terminus. Plant Molecular Biology, 2002, 50, 535-542.	3.9	19
75	The influence of the fungal pathogen Mycocentrospora acerina on the proteome and polyacetylenes and 6-methoxymellein in organic and conventionally cultivated carrots (Daucus carota) during post harvest storage. Journal of Proteomics, 2012, 75, 962-977.	2.4	18
76	Fitness costs and trade-offs in plant disease. Plant Pathology, 2013, 62, 1-1.	2.4	18
77	Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots. Postharvest Biology and Technology, 2013, 76, 26-33.	6.0	17
78	The inheritance of cyanoglucoside content in Trifolium repens L. Biochemical Genetics, 1984, 22, 139-151.	1.7	16
79	Roles of reactive oxygen species in interactions between plants and pathogens. , 2008, , 267-280.		15
80	PCR cloning, DNA sequencing and phylogenetic analysis of a xylanase gene from the phytopathogenic fungusAscochyta pisiLib Physiological and Molecular Plant Pathology, 1997, 51, 377-389.	2.5	14
81	Characterization of the transcript of a new class of retroposon-type repetitive element cloned from the powdery mildew fungus,Erysiphe graminis. Molecular Genetics and Genomics, 1996, 250, 477-482.	2.4	13
82	Identification and characterization of barley RNA-directed RNA polymerases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 375-385.	1.9	13
83	A cultivation independent, PCR-based protocol for the direct identification of plant pathogens in infected plant material. European Journal of Plant Pathology, 2009, 123, 473-476.	1.7	12
84	A Sesquiterpene Synthase from the Endophytic Fungus Serendipita indica Catalyzes Formation of Viridiflorol. Biomolecules, 2021, 11, 898.	4.0	12
85	Transgenic crops and beyond: how can biotechnology contribute to the sustainable control of plant diseases?. European Journal of Plant Pathology, 2018, 152, 977-986.	1.7	10
86	Control of Blumeria graminis f.sp. hordei by treatment with mycelial extracts from cultured fungi. Plant Pathology, 2001, 50, 552-560.	2.4	9
87	cDNA Cloning and Characterization of mRNAs Induced in Barley by the Fungal Pathogen, Erysiphe Graminis. Developments in Plant Pathology, 1993, , 304-307.	0.1	9
88	How can we exploit functional genomics approaches for understanding the nature of plant defences? Barley as a case study. European Journal of Plant Pathology, 2008, 121, 257-266.	1.7	8
89	Defining the twig fungal communities of Fraxinus species and Fraxinus excelsior genotypes with differences in susceptibility to ash dieback. Fungal Ecology, 2019, 42, 100859.	1.6	8
90	Editorial: Plant Disease Management in the Post-genomic Era: From Functional Genomics to Genome Editing. Frontiers in Microbiology, 2020, 11, 107.	3.5	8

#	Article	IF	CITATIONS
91	Regulation of Tomato Specialised Metabolism after Establishment of Symbiosis with the Endophytic Fungus Serendipita indica. Microorganisms, 2022, 10, 194.	3.6	8
92	The Fungal Endophyte Penicillium olsonii ML37 Reduces Fusarium Head Blight by Local Induced Resistance in Wheat Spikes. Journal of Fungi (Basel, Switzerland), 2022, 8, 345.	3.5	8
93	Mechanisms involved in control of Blumeria graminis f.sp. hordei in barley treated with mycelial extracts from cultured fungi. Plant Pathology, 2002, 51, 612-620.	2.4	7
94	Identification and Functional Characterisation of Two Oat UDP-Glucosyltransferases Involved in Deoxynivalenol Detoxification. Toxins, 2022, 14, 446.	3.4	5
95	Activity-guided separation of Chromolaena odorata leaf extract reveals fractions with rice disease-reducing properties. European Journal of Plant Pathology, 2015, 143, 331-341.	1.7	3
96	Azadirachta indica Reduces Black Sigatoka in East African Highland Banana by Direct Antimicrobial Effects against Mycosphaerella fijiensis without Inducing Resistance. Journal of Agricultural Science, 2017, 9, 61.	0.2	3
97	Race specificity and plant immunity , 2020, , 216-233.		3
98	Fusarium diseases: biology and management perspectives. Burleigh Dodds Series in Agricultural Science, 2018, , 23-45.	0.2	3
99	The Status and Prospects for Biotechnological Approaches for Attaining Sustainable Disease Resistance. , 0, .		1
100	The Responses of Plants to Pathogens. , 2001, , 131-158.		1
101	Biological control of plant diseases , 2020, , 289-306.		1
102	How can we exploit functional genomics approaches for understanding the nature of plant defences? Barley as a case study. , 2008, , 257-266.		1
103	What are the prospects for genetically engineered, disease resistant plants?. , 2007, , 217-231.		0