List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/894391/publications.pdf Version: 2024-02-01

MELSHI

#	Article	IF	CITATIONS
1	Soil pore size distribution shaped not only compositions but also networks of the soil microbial community. Applied Soil Ecology, 2022, 170, 104273.	4.3	13
2	Nitrapyrin-based nitrification inhibitors shaped the soil microbial community via controls on soil pH and inorganic N composition. Applied Soil Ecology, 2022, 170, 104295.	4.3	11
3	Predominant Microbial Colonizers in the Root Endosphere and Rhizosphere of Turfgrass Systems: Pseudomonas veronii, Janthinobacterium lividum, and Pseudogymnoascus spp Frontiers in Microbiology, 2021, 12, 643904.	3.5	12
4	Biological controls over the abundances of terrestrial ammonia oxidizers. Global Ecology and Biogeography, 2020, 29, 384-399.	5.8	34
5	Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry, 2020, 149, 107953.	8.8	107
6	Biochar suppresses N2O emissions and alters microbial communities in an acidic tea soil. Environmental Science and Pollution Research, 2019, 26, 35978-35987.	5.3	18
7	Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems. PLoS ONE, 2019, 14, e0218967.	2.5	4
8	Impacts on soil nitrogen availability of converting managed pine plantation into switchgrass monoculture for bioenergy. Science of the Total Environment, 2019, 654, 1326-1336.	8.0	4
9	The soil microbial community of turf: linear and nonlinear changes of taxa and N-cycling gene abundances over a century-long turf development. FEMS Microbiology Ecology, 2019, 95, .	2.7	14
10	Impacts of forest-based bioenergy feedstock production on soil nitrogen cycling. Forest Ecology and Management, 2018, 419-420, 227-239.	3.2	5
11	The extent and pathways of nitrogen loss in turfgrass systems: Age impacts. Science of the Total Environment, 2018, 637-638, 746-757.	8.0	14
12	Eighteen-Year Farming Management Moderately Shapes the Soil Microbial Community Structure but Promotes Habitat-Specific Taxa. Frontiers in Microbiology, 2018, 9, 1776.	3.5	38
13	Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation?. Soil Biology and Biochemistry, 2017, 113, 14-25.	8.8	54
14	Modeling impact of nitrogen carrier and concentration on root substrate pH. Journal of Plant Nutrition, 2017, 40, 2101-2108.	1.9	0
15	Opening up the N2O-producing fungal community in an agricultural soil with a cytochrome p450nor-based primer tool. Applied Soil Ecology, 2017, 119, 392-395.	4.3	9
16	Greenhouse gas emissions in an agroforestry system of the southeastern USA. Nutrient Cycling in Agroecosystems, 2017, 108, 85-100.	2.2	34
17	Probing the biological sources of soil N2O emissions by quantum cascade laser-based 15N isotopocule analysis. Soil Biology and Biochemistry, 2016, 100, 175-181.	8.8	11
18	Detection of N2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers. Fungal Biology, 2016, 120, 1479-1492.	2.5	25

#	Article	IF	CITATIONS
19	Reactive Nitrogen in Turfgrass Systems: Relations to Soil Physical, Chemical, and Biological Properties. Journal of Environmental Quality, 2015, 44, 210-218.	2.0	23
20	Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy. Soil Biology and Biochemistry, 2015, 83, 160-175.	8.8	107
21	Fungal and bacterial N2O production regulated by soil amendments of simple and complex substrates. Soil Biology and Biochemistry, 2015, 84, 116-126.	8.8	45
22	Soil Moisture and pH Control Relative Contributions of Fungi and Bacteria to N2O Production. Microbial Ecology, 2015, 69, 180-191.	2.8	112
23	Soil peroxidase regulates organic matter decomposition through improving the accessibility of reducing sugars and amino acids. Biology and Fertility of Soils, 2014, 50, 785-794.	4.3	38
24	Short-term effects of plant litter on the dynamics, amount, and stoichiometry of soil enzyme activity in agroecosystems. European Journal of Soil Biology, 2014, 65, 23-29.	3.2	30
25	Soil microbial responses to winter legume cover crop management during organic transition. European Journal of Soil Biology, 2014, 65, 15-22.	3.2	41
26	The significant contribution of fungi to soil N2O production across diverse ecosystems. Applied Soil Ecology, 2014, 73, 70-77.	4.3	81
27	The impact of secondary forests conversion into larch plantations on soil chemical and microbiological properties. Plant and Soil, 2013, 368, 535-546.	3.7	71
28	Nitrous oxide producing activity of diverse fungi from distinct agroecosystems. Soil Biology and Biochemistry, 2013, 66, 94-101.	8.8	57
29	Plant material addition affects soil nitrous oxide production differently between aerobic and oxygen-limited conditions. Applied Soil Ecology, 2013, 64, 91-98.	4.3	38
30	Nitrous oxide production in turfgrass systems: Effects of soil properties and grass clipping recycling. Applied Soil Ecology, 2013, 67, 61-69.	4.3	17
31	Soil nitrous oxide emissions following crop residue addition: a metaâ€analysis. Global Change Biology, 2013, 19, 2956-2964.	9.5	353
32	Sorption of Simazine and <i>S</i> -Metolachlor to Soils from a Chronosequence of Turfgrass Systems. Weed Science, 2013, 61, 508-514.	1.5	12
33	Temperature and Water Content Effects on Carbon Mineralization for Sapric Soil Material. Wetlands, 2012, 32, 939-944.	1.5	24
34	Heat stress and N fertilization affect soil microbial and enzyme activities in the creeping bentgrass (Agrostis Stolonifera L.) rhizosphere. Applied Soil Ecology, 2012, 56, 19-26.	4.3	16
35	Microbial Control of Soil Carbon Accumulation in Turfgrass Systems. , 2012, , 215-231.		8
36	EFFECT OF SOIL SATURATION ON DEVELOPMENT AND ¹⁵ N-NITRATE UPTAKE EFFICIENCY OF TWO WARM SEASON GRASSES EMERGING FROM DORMANCY. Journal of Plant Nutrition, 2011, 34, 2039-2054.	1.9	2

#	Article	lF	CITATIONS
37	Microbial and soil properties in bentgrass putting greens: Impacts of nitrogen fertilization rates. Geoderma, 2011, 162, 215-221.	5.1	20
38	Soil Organic Matter Accumulation in Creeping Bentgrass Greens: A Chronosequence with Implications for Management and Carbon Sequestration. Agronomy Journal, 2011, 103, 604-610.	1.8	12
39	Cellulase Activity as a Mechanism for Suppression of Phytophthora Root Rot in Mulches. Phytopathology, 2011, 101, 223-230.	2.2	36
40	Seasonal variations of soil microbial biomass and activity in warm- and cool-season turfgrass systems. Soil Biology and Biochemistry, 2011, 43, 1536-1543.	8.8	75
41	Soil organic matter stabilization in turfgrass ecosystems: Importance of microbial processing. Soil Biology and Biochemistry, 2010, 42, 642-648.	8.8	20
42	Agricultural and Ecological Significance of Soil Enzymes: Soil Carbon Sequestration and Nutrient Cycling. Soil Biology, 2010, , 43-60.	0.8	13
43	The community composition of soil-denitrifying bacteria from a turfgrass environment. Research in Microbiology, 2010, 161, 315-325.	2.1	18
44	Chemical composition of dissolved organic matter in agroecosystems: Correlations with soil enzyme activity and carbon and nitrogen mineralization. Applied Soil Ecology, 2010, 46, 426-435.	4.3	135
45	Fate of ¹⁵ Nâ€Nitrate Applied to a Bermudagrass System: Assimilation Profiles in Different Seasons. Crop Science, 2009, 49, 2291-2301.	1.8	17
46	Soil Organic Matter Changes in Turfgrass Systems Affect Binding and Biodegradation of Simazine. Crop Science, 2009, 49, 1481-1488.	1.8	7
47	Interactions between N fertilization, grass clipping addition and pH in turf ecosystems: Implications for soil enzyme activities and organic matter decomposition. Soil Biology and Biochemistry, 2009, 41, 1425-1432.	8.8	69
48	Intensive Management Affects Composition of Betaproteobacterial Ammonia Oxidizers in Turfgrass Systems. Microbial Ecology, 2008, 56, 178-190.	2.8	13
49	Soil chemical and microbiological properties in hay production systems: residual effects of contrasting N fertilization of swine lagoon effluent versus ammonium nitrate. Biology and Fertility of Soils, 2008, 44, 425-434.	4.3	2
50	Soil enzyme activities in two forage systems following application of different rates of swine lagoon effluent or ammonium nitrate. Applied Soil Ecology, 2008, 38, 128-136.	4.3	58
51	Soil microbial biomass, activity and potential nitrogen mineralization in a pasture: Impact of stock camping activity. Soil Biology and Biochemistry, 2007, 39, 149-157.	8.8	51
52	Soil microbial community composition and structure: residual effects of contrasting N fertilization of swine lagoon effluent versus ammonium nitrate. Plant and Soil, 2007, 292, 233-242.	3.7	22
53	Soil microbial biomass and nitrogen dynamics in a turfgrass chronosequence: A short-term response to turfgrass clipping addition. Soil Biology and Biochemistry, 2006, 38, 2032-2042.	8.8	45
54	Soil microbial community structure and diversity in a turfgrass chronosequence: Land-use change versus turfgrass management. Applied Soil Ecology, 2006, 34, 209-218.	4.3	76

#	Article	IF	CITATIONS
55	Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant and Soil, 2006, 288, 285-296.	3.7	70
56	Soil microbial biomass, activity and nitrogen transformations in a turfgrass chronosequence. Soil Biology and Biochemistry, 2006, 38, 311-319.	8.8	70
57	Microbial Catabolic Diversity in Soils Contaminated with Hydrocarbons and Heavy Metals. Environmental Science & Technology, 2005, 39, 1974-1979.	10.0	24
58	Microbial Nitrogen Transformations in Response to Treated Dairy Waste in Agricultural Soils. Soil Science Society of America Journal, 2004, 68, 1867-1874.	2.2	39
59	Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer. Soil Biology and Biochemistry, 2000, 32, 1453-1457.	8.8	77
60	Effects of aeration and moisture during windrow composting on the nitrogen fertilizer values of dairy waste composts. Applied Soil Ecology, 1999, 11, 17-28.	4.3	43