Regina Goetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8943612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural basis of FGF23 hormone signaling. , 2021, , 299-318.		Ο
2	A G protein–coupled, IP3/protein kinase C pathway controlling the synthesis of phosphaturic hormone FGF23. JCI Insight, 2019, 4, .	5.0	16
3	α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature, 2018, 553, 461-466.	27.8	348
4	Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism. Scientific Reports, 2018, 8, 15973.	3.3	12
5	Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB Journal, 2018, 32, 3752-3764.	0.5	85
6	Current and emerging topics in research on FGF signalling. Seminars in Cell and Developmental Biology, 2016, 53, 74-75.	5.0	0
7	The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrology Dialysis Transplantation, 2015, 30, 223-233.	0.7	124
8	FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO Journal, 2014, 33, n/a-n/a.	7.8	159
9	Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 2014, 513, 436-439.	27.8	201
10	Adiponectin—a mediator of specific metabolic actions of FGF21. Nature Reviews Endocrinology, 2013, 9, 506-508.	9.6	18
11	Exploring mechanisms of FGF signalling through the lens of structural biology. Nature Reviews Molecular Cell Biology, 2013, 14, 166-180.	37.0	449
12	Parathyroid-Specific Deletion of Klotho Unravels a Novel Calcineurin-Dependent FGF23 Signaling Pathway That Regulates PTH Secretion. PLoS Genetics, 2013, 9, e1003975.	3.5	139
13	FGF23-Induced Hypophosphatemia Persists inHypMice Deficient in the WNT Coreceptor Lrp6. Contributions To Nephrology, 2013, 180, 124-137.	1.1	11
14	Arterial Klotho Expression and FGF23 Effects on Vascular Calcification and Function. PLoS ONE, 2013, 8, e60658.	2.5	123
15	Klotho Coreceptors Inhibit Signaling by Paracrine Fibroblast Growth Factor 8 Subfamily Ligands. Molecular and Cellular Biology, 2012, 32, 1944-1954.	2.3	74
16	Conversion of a Paracrine Fibroblast Growth Factor into an Endocrine Fibroblast Growth Factor. Journal of Biological Chemistry, 2012, 287, 29134-29146.	3.4	79
17	FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2–SGK1 signaling pathway. Bone, 2012, 51, 621-628.	2.9	176
18	Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor Î ³ . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3143-3148.	7.1	331

REGINA GOETZ

#	Article	IF	CITATIONS
19	The Alternatively Spliced Acid Box Region Plays a Key Role in FGF Receptor Autoinhibition. Structure, 2012, 20, 77-88.	3.3	66
20	Regulation of serum 1,25(OH) ₂ Vitamin D ₃ levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. American Journal of Physiology - Renal Physiology, 2011, 301, F371-F377.	2.7	93
21	Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice. Journal of Clinical Investigation, 2011, 121, 3220-3232.	8.2	125
22	Research Resource: Comprehensive Expression Atlas of the Fibroblast Growth Factor System in Adult Mouse. Molecular Endocrinology, 2010, 24, 2050-2064.	3.7	579
23	Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 407-412.	7.1	327
24	FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. American Journal of Physiology - Renal Physiology, 2009, 297, F282-F291.	2.7	361
25	FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10853-10858.	7.1	605
26	Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2009, 284, 17883-17896.	3.4	121
27	<i>In vivo</i> genetic evidence for klothoâ€dependent, fibroblast growth factor 23 (Fgf23) â€mediated regulation of systemic phosphate homeostasis. FASEB Journal, 2009, 23, 433-441.	0.5	235
28	Inhibition of Growth Hormone Signaling by the Fasting-Induced Hormone FGF21. Cell Metabolism, 2008, 8, 77-83.	16.2	353
29	FGF-23–Klotho signaling stimulates proliferation and prevents vitamin D–induced apoptosis. Journal of Cell Biology, 2008, 182, 459-465.	5.2	110
30	βKlotho is required for metabolic activity of fibroblast growth factor 21. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7432-7437.	7.1	516
31	Molecular Insights into the Klotho-Dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members. Molecular and Cellular Biology, 2007, 27, 3417-3428.	2.3	457
32	The parathyroid is a target organ for FGF23 in rats. Journal of Clinical Investigation, 2007, 117, 4003-8.	8.2	802
33	Tissue-specific Expression of Î ² Klotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21. Journal of Biological Chemistry, 2007, 282, 26687-26695.	3.4	654
34	Endocrine Regulation of the Fasting Response by PPARα-Mediated Induction of Fibroblast Growth Factor 21. Cell Metabolism, 2007, 5, 415-425.	16.2	1,306
35	A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. Journal of Clinical Investigation, 2007, 117, 2684-2691.	8.2	390
36	A protein canyon in the FGF–FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Current Opinion in Structural Biology, 2005, 15, 506-516.	5.7	132

#	Article	IF	CITATIONS
37	Analysis of the Biochemical Mechanisms for the Endocrine Actions of Fibroblast Growth Factor-23. Endocrinology, 2005, 146, 4647-4656.	2.8	192