Yasushi Takemura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8943246/publications.pdf

Version: 2024-02-01

144 papers 2,379 citations

236833 25 h-index 42 g-index

146 all docs

146 docs citations

146 times ranked 2835 citing authors

#	Article	IF	CITATIONS
1	A Novel Wireless Charging Technique for Low-Power Devices Based on Wiegand Transducer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 372-383.	3.7	8
2	Evaluation of Harmonic Signals Derived From Multiple Spatially Separated Samples for Magnetic Particle Imaging. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	O
3	AC and DC magnetic softness enhanced dual-doped γ-Fe2O3 nanoparticles for highly efficient cancer theranostics. Applied Materials Today, 2022, 28, 101533.	2.3	4
4	Long-range stray field mapping of statically magnetized nanoparticles using magnetoresistive sensor. Journal of Applied Physics, 2022, 131, 224902.	1.1	2
5	Power dissipation in magnetic nanoparticles evaluated using the AC susceptibility of their linear and nonlinear responses. Journal of Magnetism and Magnetic Materials, 2021, 517, 167401.	1.0	17
6	pH- and thermoresponsive aggregation behavior of polymer-grafted magnetic nanoparticles. Polymer Journal, 2021, 53, 1011-1018.	1.3	3
7	Magnetic Reversal in Wiegand Wires Evaluated by First-Order Reversal Curves. Materials, 2021, 14, 3868.	1.3	7
8	Magnetic particle imaging using linear magnetization response-driven harmonic signal of magnetoresistive sensor. Applied Physics Express, 2021, 14, 095001.	1.1	9
9	Self-Oscillating Boost Converter of Wiegand Pulse Voltage for Self-Powered Modules. Energies, 2021, 14, 5373.	1.6	6
10	Effective NÃ $@$ el relaxation time constant and intrinsic dipolar magnetism in a multicore magnetic nanoparticle system. Journal of Applied Physics, 2021, 130, .	1,1	10
11	Surface Magnetization Reversal of Wiegand Wire Measured by the Magneto-Optical Kerr Effect. Materials, 2021, 14, 5417.	1.3	4
12	Quantitation method of loss powers using commercial magnetic nanoparticles based on superparamagnetic behavior influenced by anisotropy for hyperthermia. Journal of Magnetism and Magnetic Materials, 2021, 538, 168313.	1.0	26
13	Empirical and simulated evaluations of easy-axis dynamics of magnetic nanoparticles based on their magnetization response in alternating magnetic field. Journal of Magnetism and Magnetic Materials, 2021, 539, 168354.	1.0	6
14	Pseudo-single domain colloidal superparamagnetic nanoparticles designed at a physiologically tolerable AC magnetic field for clinically safe hyperthermia. Nanoscale, 2021, 13, 19484-19492.	2.8	7
15	Single-Bit, Self-Powered Digital Counter Using a Wiegand Sensor for Rotary Applications. Sensors, 2020, 20, 3840.	2.1	5
16	Magnetization Characteristics of Oriented Single-Crystalline NiFe-Cu Nanocubes Precipitated in a Cu-Rich Matrix. Molecules, 2020, 25, 3282.	1.7	2
17	Improvement of Pulse Voltage Generated by Wiegand Sensor Through Magnetic-Flux Guidance. Sensors, 2020, 20, 1408.	2.1	12
18	Magneto-plasmonic nanostars for image-guided and NIR-triggered drug delivery. Scientific Reports, 2020, 10, 10115.	1.6	49

#	Article	IF	CITATIONS
19	Second harmonic response of magnetic nanoparticles under parallel static field and perpendicular oscillating field for magnetic particle imaging. AIP Advances, 2020, 10, .	0.6	5
20	High-Frequency Néel Relaxation Response for Submillimeter Magnetic Particle Imaging Under Low Field Gradient. Physical Review Applied, 2020, 14, .	1.5	10
21	Output Characteristics and Circuit Modeling of Wiegand Sensor. Sensors, 2019, 19, 2991.	2.1	12
22	Characterization of Néel and Brownian Relaxations Isolated from Complex Dynamics Influenced by Dipole Interactions in Magnetic Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 28859-28866.	1.5	84
23	Modulating relaxation responses of magnetic nanotracers for submillimeter imaging. Applied Physics Letters, 2019, 115, .	1.5	7
24	Circuit Parameters of a Receiver Coil Using a Wiegand Sensor for Wireless Power Transmission. Sensors, 2019, 19, 2710.	2.1	14
25	High intrinsic loss power of multicore magnetic nanoparticles with blood-pooling property for hyperthermia. AIP Advances, 2019, 9, .	0.6	8
26	Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core–shell nanoparticles. Nanoscale, 2019, 11, 6489-6496.	2.8	36
27	Dipolar field-induced asymmetric magnetization hysteresis of immobile superparamagnetic nanoclusters. Journal of Magnetism and Magnetic Materials, 2019, 480, 132-137.	1.0	5
28	Effects of size and anisotropy of magnetic nanoparticles associated with dynamics of easy axis for magnetic particle imaging. Journal of Magnetism and Magnetic Materials, 2019, 474, 311-318.	1.0	29
29	Enhanced specific loss power from Resovist \hat{A}^{\otimes} achieved by aligning magnetic easy axes of nanoparticles for hyperthermia. Journal of Magnetism and Magnetic Materials, 2019, 473, 148-154.	1.0	39
30	Magnetoliposomes in Controlled-Release Drug Delivery Systems. Critical Reviews in Biomedical Engineering, 2019, 47, 495-505.	0.5	9
31	Magnetic Relaxation of Intracellular Magnetic Nanoparticles for Hyperthermia. Critical Reviews in Biomedical Engineering, 2019, 47, 489-494.	0.5	2
32	Harmonic decomposition of magneto-optical signal from suspensions of superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 451, 248-253.	1.0	9
33	Giant Magnetic Heat Induction of Magnesiumâ€Doped γâ€Fe ₂ O ₃ Superparamagnetic Nanoparticles for Completely Killing Tumors. Advanced Materials, 2018, 30, 1704362.	11.1	99
34	Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. Nanoscale, 2018, 10, 184-194.	2.8	61
35	Two-step relaxation process of colloidal magnetic nanoclusters under pulsed fields. Applied Physics Express, 2018, 11, 075001.	1.1	25
36	Complex Magnetization Harmonics of Polydispersive Magnetic Nanoclusters. Nanomaterials, 2018, 8, 424.	1.9	7

#	Article	IF	Citations
37	Hyperthermia and chemotherapy using Fe(Salen) nanoparticles might impact glioblastoma treatment. Scientific Reports, 2017, 7, 42783.	1.6	42
38	Preparation of a Magnetic-responsive Polycation with a Tetrachloroferrate Anion. Chemistry Letters, 2017, 46, 1473-1475.	0.7	1
39	Evaluation of easy-axis dynamics in a magnetic fluid by measurement and analysis of the magnetization curve in an alternating magnetic field. Applied Physics Express, 2017, 10, 085001.	1.1	22
40	Image-Guided Therapy. , 2017, , 41-55.		1
41	Batteryless Hall Sensor Operated by Energy Harvesting From a Single Wiegand Pulse. IEEE Transactions on Magnetics, 2017, 53, 1-6.	1.2	27
42	Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale, 2017, 9, 764-773.	2.8	62
43	Layer-by-layer assembled magnetic prednisolone microcapsules (MPC) for controlled and targeted drug release at rheumatoid arthritic joints. Journal of Magnetism and Magnetic Materials, 2017, 427, 258-267.	1.0	16
44	Specific Loss Power of Magnetic Particles for Hyperthermia Excited by Pancake-type Applicator. IEEJ Transactions on Fundamentals and Materials, 2017, 137, 476-480.	0.2	2
45	Magnetic Nanogel-enabled Image-guided Therapy. RSC Smart Materials, 2017, , 109-127.	0.1	1
46	Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range. Nanomaterials, 2016, 6, 170.	1.9	36
47	Static and Dynamic Magnetic Properties of Intercellular Magnetic Nanoparticles for Biomedical Applications. , 2016, , .		0
48	Cell imaging using GalnAsP semiconductor photoluminescence. Optics Express, 2016, 24, 11232.	1.7	9
49	Magnetization Reversal and Specific Loss Power of Magnetic Nanoparticles in Cellular Environment Evaluated by AC Hysteresis Measurement. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	21
50	Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement. Journal of Applied Physics, 2015, 117, .	1.1	32
51	Variation of Magnetic Particle Imaging Tracer Performance With Amplitude and Frequency of the Applied Magnetic Field. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	14
52	Living-cell imaging using a photonic crystal nanolaser array. Optics Express, 2015, 23, 17056.	1.7	19
53	Eddy Current Defect Detection of Side Transverse Crack in Railhead by Integrating Experiment with Simulation. Advanced Materials Research, 2014, 875-877, 593-598.	0.3	2
54	Hyperthermia Using Antibody-Conjugated Magnetic Nanoparticles and Its Enhanced Effect with Cryptotanshinone. Nanomaterials, 2014, 4, 319-330.	1.9	21

#	Article	IF	CITATIONS
55	Pleiotropic functions of magnetic nanoparticles for ex vivo gene transfer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1165-1174.	1.7	20
56	Transfection efficiency influenced by aggregation of DNA/polyethylenimine max/magnetic nanoparticle complexes. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	16
57	Physical Parameters to Enhance AC Magnetically Induced Heating Power of Ferrite Nanoparticles for Hyperthermia in Nanomedicine. IEEE Nanotechnology Magazine, 2013, 12, 314-322.	1.1	17
58	Self-Heating Temperature and AC Hysteresis of Magnetic Iron Oxide Nanoparticles and Their Dependence on Secondary Particle Size. IEEE Transactions on Magnetics, 2013, 49, 240-243.	1.2	22
59	Label-free imaging of live cell using large-scale photonic crystal nanolaser array. Proceedings of SPIE, 2013, , .	0.8	1
60	Heat Control of Resonant Circuit using Ferrite-core for Hyperthermia Implant. IEEJ Transactions on Fundamentals and Materials, 2013, 133, 362-365.	0.2	1
61	Magnetic Nanoparticle Hyperthermia Using Pluronic-Coated Nanoparticles: An <i>In Vitro</i> Study. Journal of Nanomaterials, 2012, 2012, 1-5.	1.5	33
62	Energy harvesting derived from magnetization reversal in FeCoV wire. , 2012, , .		4
63	Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Applied Physics Letters, 2012, 100, .	1.5	71
64	Direct live cell imaging using large-scale nanolaser array. , 2012, , .		1
65	Resonant circuits for thermal therapy excited by RF magnetic field from MRI. , 2012, , .		1
66	Heat dissipation and magnetic properties of surface-coated Fe3O4 nanoparticles for biomedical applications. Journal of Magnetism and Magnetic Materials, 2012, 324, 3437-3442.	1.0	43
67	Study on increase in temperature of Co–Ti ferrite nanoparticles for magnetic hyperthermia treatment. Thermochimica Acta, 2012, 532, 123-126.	1.2	19
68	Magnetic Relaxation of Magnetic Nanoparticles Dispersed in Solution under High Frequency Magnetic Field. IEEJ Transactions on Fundamentals and Materials, 2012, 132, 813-817.	0.2	0
69	Resonant circuit as magnetic device for cancer therapy. Journal of Physics: Conference Series, 2011, 263, 012001.	0.3	0
70	Effective excitation by single magnet in rotation sensor and domain wall displacement of FeCoV wire. Journal of Applied Physics, 2011, 109, 07E531.	1.1	13
71	Self-Heating Property of Magnetite Nanoparticles Dispersed in Solution. IEEE Transactions on Magnetics, 2011, 47, 4151-4154.	1.2	19
72	Hyperthermia Implant Consisting of Resonant Circuit Delivered to Tumor Through 18 G Needle. IEEE Transactions on Magnetics, 2011, 47, 2887-2889.	1.2	6

#	Article	IF	Citations
73	Magnetic characterization of surface-coated magnetic nanoparticles for biomedical application. Journal of Magnetism and Magnetic Materials, 2011, 323, 1398-1403.	1.0	85
74	Fabrication of Ferromagnetic Nanoconstriction Using Atomic Force Microscopy Nanoscratching. Journal of Nanoscience and Nanotechnology, 2011, 11, 10945-10948.	0.9	5
75	Evaluation of Magnetic and Thermal Properties of Ferrite Nanoparticles for Biomedical Applications. Journal of Magnetics, 2011, 16, 164-168.	0.2	29
76	Local Oxidation Using Scanning Probe Microscope for Fabricating Magnetic Nanostructures. Journal of Nanoscience and Nanotechnology, 2010, 10, 4528-4532.	0.9	0
77	Magnetic characterization and self-heating of various magnetic nanoparticles for medical applications. , 2010, , .		0
78	Constriction of ferromagnetic patterned thin film by AFM scratch lithography. , 2010, , .		0
79	Effects of Mn concentration on the ac magnetically induced heating characteristics of superparamagnetic MnxZn1â^'xFe2O4 nanoparticles for hyperthermia. Applied Physics Letters, 2010, 96, .	1.5	24
80	Magnetization and self-heating temperature of NiFe ₂ O ₄ nanoparticles measured by applying ac magnetic field. Journal of Physics: Conference Series, 2010, 200, 122010.	0.3	26
81	Improvement of scanning probe microscopy local oxidation nanolithography. Journal of Vacuum Science & Technology B, 2009, 27, 948-952.	1.3	4
82	Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells. Journal of Magnetism and Magnetic Materials, 2009, 321, 1482-1484.	1.0	112
83	Effects of particle dipole interaction on the ac magnetically induced heating characteristics of ferrite nanoparticles for hyperthermia. Applied Physics Letters, 2009, 95, .	1.5	85
84	AC Magnetic-Field-Induced Heating and Physical Properties of Ferrite Nanoparticles for a Hyperthermia Agent in Medicine. IEEE Nanotechnology Magazine, 2009, 8, 86-94.	1.1	78
85	Evaluation of equal error rate in document authentication system using magnetic fiber. , 2009, , .		2
86	Dependence of the LC Parameter on the Temperature Rise of a Resonant Circuit for Hyperthermia Implant. IEEJ Transactions on Electrical and Electronic Engineering, 2008, 3, 334-337.	0.8	1
87	AFM Nanoâ€oxidation of NiFe Thin Films Capped with Alâ€Oxide Layers for Planarâ€type Tunnel Junction. IEEJ Transactions on Electrical and Electronic Engineering, 2008, 3, 382-385.	0.8	1
88	Magnetization Switching of Magnetic Submicron Structure Fabricated by Atomic Force Microscope. IEEJ Transactions on Electrical and Electronic Engineering, 2008, 3, 386-389.	0.8	0
89	Implant hyperthermia resonant circuit produces heat in response to MRI unit radiofrequency pulses. British Journal of Radiology, 2008, 81, 69-72.	1.0	8
90	Local Oxidation of Si Surfaces by Tapping-Mode Scanning Probe Microscopy: Size Dependence of Oxide Wires on Dynamic Properties of Cantilever. Japanese Journal of Applied Physics, 2008, 47, 718-720.	0.8	7

#	Article	IF	CITATIONS
91	Measurement of Reaction Current during Atomic Force Microscope Local Oxidation of Conductive Surfaces Capped with Insulating Layers. Japanese Journal of Applied Physics, 2008, 47, 768-770.	0.8	0
92	Measurement of faradaic current during AFM local oxidation of magnetic metal thin films. Journal of Physics: Conference Series, 2007, 61, 1147-1151.	0.3	5
93	Planar-type ferromagnetic tunnel junctions fabricated by SPM local oxidation. Journal of Magnetism and Magnetic Materials, 2007, 310, e641-e643.	1.0	7
94	Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application. Journal of Magnetism and Magnetic Materials, 2007, 310, 2868-2870.	1.0	116
95	Constant Velocity of Domain Wall Propagation Independent of Applied Field Strength in Vicalloy Wire. IEEE Transactions on Magnetics, 2007, 43, 2397-2399.	1.2	11
96	Output Properties of Zero-Speed Sensors Using FeCoV Wire and NiFe/CoFe Multilayer Thin Film. IEEE Sensors Journal, 2006, 6, 1186-1190.	2.4	7
97	Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine. Applied Physics Letters, 2006, 89, 252503.	1.5	83
98	Magnetoresistance effect of planar-type ferromagnetic tunnel junctions. Journal of Applied Physics, 2006, 99, 08T312.	1.1	10
99	AFM lithography for fabrication of magnetic nanostructures and devices. Journal of Magnetism and Magnetic Materials, 2006, 304, 19-22.	1.0	8
100	Magnetic Properties, Self-Temperature Rising Characteristics, and Biocompatibility of NiFe\$_2\$O\$_4\$Nanoparticles for Hyperthermia Applications. IEEE Transactions on Magnetics, 2006, 42, 2833-2835.	1.2	14
101	Dependence of Frequency and Magnetic Field on Self-Heating Characteristics of NiFe\$_2\$O\$_4\$Nanoparticles for Hyperthermia. IEEE Transactions on Magnetics, 2006, 42, 3566-3568.	1.2	44
102	Control of Demagnetizing Field and Magnetostatic Coupling in FeCoV Wires for Zero-Speed Sensor. IEEE Transactions on Magnetics, 2006, 42, 3300-3302.	1.2	10
103	A Possibility of Hyperthermia Treatment using MRI Equipment. , 2006, 2006, 6373-5.		1
104	Analysis of Document Authentication Technique using Soft Magnetic Fibers. IEEJ Transactions on Fundamentals and Materials, 2006, 126, 269-275.	0.2	0
105	A Possibility of Hyperthermia Treatment using MRI Equipment. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
106	Magnetization reversal with domain-wall pinning in (Ga, Mn)As wire. IEEE Transactions on Magnetics, 2005, 41, 2742-2744.	1.2	3
107	Resonant circuits for hyperthermia excited by RF magnetic field of MRI. IEEE Transactions on Magnetics, 2005, 41, 3673-3675.	1.2	15
108	Modification of Electrical Properties and Magnetic Domain Structures in Magnetic Nanostructures by AFM Nanolithography. Advanced Engineering Materials, 2005, 7, 170-173.	1.6	5

7

#	Article	IF	Citations
109	Direct Modification of Magnetic Domains in Co Nanostructures by Atomic Force Microscope Lithography. Japanese Journal of Applied Physics, 2005, 44, L285-L287.	0.8	7
110	Magnetoresistance of patterned NiFe thin films with structures modified by atomic force microscope nanolithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2390.	1.6	5
111	Ferromagnetic Ultra-Small Tunnel Junction Devices Fabricated by Scanning Probe Microscope (SPM) Local Oxidation. IEEE Transactions on Magnetics, 2004, 40, 2640-2642.	1.2	20
112	Fabrication of Zero-Speed Sensor Using Weakly Coupled NiFe/CoFe Multilayer Films. IEEE Transactions on Magnetics, 2004, 40, 2667-2669.	1.2	11
113	SPM fabrication of nanometerscale ferromagnetic metal-oxide devices. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1581-1583.	1.0	9
114	Magnetic nanostructures fabricated by the atomic force microscopy nano-lithography technique. Nanotechnology, 2004, 15, S566-S569.	1.3	21
115	<title>Fabrication of magnetic nanostructures and devices by AFM nanolithography technique</title> ., 2004,,.		0
116	RC-coupled ferromagnetic single-electron transistors. Journal of Applied Physics, 2003, 93, 6873-6875.	1.1	5
117	Applied voltage dependence of nano-oxidation of ferromagnetic thin films using atomic force microscope. Journal of Applied Physics, 2003, 93, 7346-7348.	1.1	15
118	Theoretical Study on Tunnel Magnetoresistance Oscillation Due to Coulomb Blockade in Nanoscale Magnetic Tunnel Junction. Materials Research Society Symposia Proceedings, 2003, 776, 11181.	0.1	0
119	Resistively coupled ferromagnetic single-electron transistors. Journal of Applied Physics, 2002, 91, 7442.	1.1	4
120	Ferromagnetic Single-Electron Transistor with RC Gate. Materials Research Society Symposia Proceedings, 2002, 746, 1.	0.1	0
121	Tunnel magnetoresistance on ferromagnetic single-electron transistors with multiple tunnel junction. Journal of Applied Physics, 2001, 89, 7365-7367.	1.1	13
122	Planar-type Ferromagnetic Tunnel Junctions Fabricated by Atomic Force Microscope for Nonvolatile Memory. Japanese Journal of Applied Physics, 2001, 40, 128-129.	0.8	7
123	Frequency dependence of output voltage generated from bundled compound magnetic wires. IEEE Transactions on Magnetics, 2001, 37, 2862-2864.	1.2	10
124	Tunneling-type giant magnetoresistance of Fe-SiO 2 granular thin films prepared by rf magnetron sputtering., 2000, 4086, 344.		0
125	Generation and detection of magnetoelastic waves in partially annealed amorphous wires. IEEE Transactions on Magnetics, 2000, 36, 3627-3629.	1.2	0
126	NiFe-Based Nanostructures Fabricated Using an Atomic Force Microscope. Japanese Journal of Applied Physics, 2000, 39, L1292-L1293.	0.8	12

#	Article	IF	CITATIONS
127	Structural and magnetic properties of FexSey thin films during their selenization process. Journal of Applied Physics, 1998, 83, 6533-6535.	1.1	11
128	A novel behaviour of dynamic magnetization process in gold-plated CoFeSiB amorphous wires. IEEE Transactions on Magnetics, 1997, 33, 3361-3363.	1.2	2
129	Dependence of magnetization dynamics and magneto-impedance effect in FeSiB amorphous wire on annealing conditions. IEEE Transactions on Magnetics, 1996, 32, 4947-4949.	1.2	8
130	Dynamic magnetization process in FeCoSiB amorphous wire under trigonal magnetic field. IEEE Transactions on Magnetics, 1996, 32, 4992-4994.	1.2	1
131	Multiple signal transmission in wide-range position sensor using magnetoelastic wave in FeSiB amorphous wire. IEEE Transactions on Magnetics, 1995, 31, 3155-3157.	1.2	10
132	Characterization of galvanomagnetic electromotive force effect in NiFe thin films. IEEJ Transactions on Fundamentals and Materials, 1994, 114, 780-784.	0.2	0
133	Calculation of Size Effect on Galvanomagnetic Electromotive Force Effect Using a Circuit-Array Model. Japanese Journal of Applied Physics, 1994, 33, 4891-4892.	0.8	0
134	Atomic layer epitaxy of nitrogen-doped ZnSe. Journal of Electronic Materials, 1993, 22, 437-440.	1.0	5
135	Lattice vibration in alternating monolayers of ZnSe and ZnTe. Applied Physics Letters, 1993, 63, 3176-3178.	1.5	2
136	Structural Analysis of ZnSe-ZnTe Short-Period Superlattice by Raman Scattering Spectroscopy. IEEJ Transactions on Fundamentals and Materials, 1993, 113, 749-754.	0.2	0
137	Self-limiting growth with 0.5 monolayer per cycle in atomic layer epitaxy of ZnTe. Journal of Crystal Growth, 1992, 117, 144-147.	0.7	8
138	(ZnSe)m-(ZnTe)n short-period strained layer superlattices prepared by atomic layer epitaxy. Journal of Crystal Growth, 1991, 111, 802-806.	0.7	7
139	Self-Limiting Growth in Atomic Layer Epitaxy of ZnTe. Japanese Journal of Applied Physics, 1991, 30, L246-L248.	0.8	17
140	Optical properties of ZnSeî—,ZnTe strained layer superlattices prepared by atomic layer epitaxy. Journal of Crystal Growth, 1990, 101, 81-85.	0.7	13
141	Atomic layer epitaxial growth of ZnSe, ZnTe, and ZnSeâ€ZnTe strainedâ€layer superlattices. Journal of Applied Physics, 1989, 66, 2597-2602.	1.1	46
142	Atomic layer epitaxy of ZnSe-ZnTe strained layer superlattices. Journal of Crystal Growth, 1989, 95, 580-583.	0.7	26
143	Wide bandgap Il–VI compound semiconductor superlattices grown by metalorganic molecular beam epitaxy. Journal of Crystal Growth, 1988, 93, 720-725.	0.7	21
144	Quantitative Analysis of Transverse Cracking of Rail Using Eddy Current Non-Destructive Testing. Applied Mechanics and Materials, 0, 249-250, 70-75.	0.2	1

9