Mark M Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/894220/publications.pdf Version: 2024-02-01

MADE M DAVIS

#	Article	IF	CITATIONS
1	Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nature Biotechnology, 2022, 40, 110-120.	17.5	81
2	Single-cell sequencing unveils distinct immune microenvironments with CCR6-CCL20 crosstalk in human chronic pancreatitis. Gut, 2022, 71, 1831-1842.	12.1	17
3	Durability of immune responses to the BNT162b2 mRNA vaccine. Med, 2022, 3, 25-27.	4.4	33
4	Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell, 2022, 185, 1025-1040.e14.	28.9	243
5	Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Science Translational Medicine, 2022, 14, eabm7853.	12.4	71
6	Minimal Information about MHC Multimers (MIAMM). Journal of Immunology, 2022, 208, 531-537.	0.8	0
7	Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. Science Translational Medicine, 2022, 14, eabn7842.	12.4	92
8	Multiple early factors anticipate post-acute COVID-19 sequelae. Cell, 2022, 185, 881-895.e20.	28.9	605
9	KIR ⁺ CD8 ⁺ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science, 2022, 376, eabi9591.	12.6	113
10	Treatment With Simvastatin and Rifaximin Restores the Plasma Metabolomic Profile in Patients With Decompensated Cirrhosis. Hepatology Communications, 2022, 6, 1100-1112.	4.3	5
11	Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circulation Research, 2022, 130, 1510-1530.	4.5	25
12	Immune Checkpoint Inhibitor Cardiotoxicity: Understanding Basic Mechanisms and Clinical Characteristics and Finding a Cure. Annual Review of Pharmacology and Toxicology, 2021, 61, 113-134.	9.4	40
13	Regulation of peanut-specific CD8+ T cells from nonallergic individuals. Journal of Allergy and Clinical Immunology, 2021, 147, 385-387.e1.	2.9	3
14	Aging and CMV discordance are associated with increased immune diversity between monozygotic twins. Immunity and Ageing, 2021, 18, 5.	4.2	19
15	Global analysis of shared TÂcell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity, 2021, 54, 586-602.e8.	14.3	80
16	Signatures of immune dysfunction in HIV and HCV infection share features with chronic inflammation in aging and persist after viral reduction or elimination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
17	Learning from HIV-1 to predict the immunogenicity of TÂcell epitopes in SARS-CoV-2. IScience, 2021, 24, 102311.	4.1	11
18	Nanoparticle-enabled innate immune stimulation activates endogenous tumor-infiltrating T cells with broad antigen specificities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14

#	Article	IF	CITATIONS
19	Systems Immunology: Revealing Influenza Immunological Imprint. Viruses, 2021, 13, 948.	3.3	7
20	Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19. Nature Cell Biology, 2021, 23, 620-630.	10.3	67
21	Antigen-Specific T-Cell Activation Distinguishes between Recent and Remote Tuberculosis Infection. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1556-1565.	5.6	25
22	CD8 ⁺ T cells specific for conserved coronavirus epitopes correlate with milder disease in patients with COVID-19. Science Immunology, 2021, 6, .	11.9	115
23	The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell, 2021, 184, 3915-3935.e21.	28.9	133
24	Humans with inherited TÂcell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell, 2021, 184, 3812-3828.e30.	28.9	53
25	Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature, 2021, 596, 410-416.	27.8	313
26	An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nature Aging, 2021, 1, 598-615.	11.6	202
27	Evolution of Cytomegalovirus-Responsive T Cell Clonality following Solid Organ Transplantation. Journal of Immunology, 2021, 207, 2077-2085.	0.8	7
28	Functional Consequences of Memory Inflation after Solid Organ Transplantation. Journal of Immunology, 2021, 207, ji2100405.	0.8	3
29	SIMON: Open-Source Knowledge Discovery Platform. Patterns, 2021, 2, 100178.	5.9	15
30	Modeling human adaptive immune responses with tonsil organoids. Nature Medicine, 2021, 27, 125-135.	30.7	133
31	CD4 ⁺ T cells contribute to neurodegeneration in Lewy body dementia. Science, 2021, 374, 868-874.	12.6	92
32	Integrated single-cell transcriptomics and epigenomics reveals strong germinal center–associated etiology of autoimmune risk loci. Science Immunology, 2021, 6, eabh3768.	11.9	19
33	Alloantigen-specific type 1 regulatory T cells suppress through CTLA-4 and PD-1 pathways and persist long-term in patients. Science Translational Medicine, 2021, 13, eabf5264.	12.4	40
34	Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature, 2020, 577, 399-404.	27.8	537
35	<i>Bifidobacterium</i> alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27509-27515.	7.1	133
36	An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity. Immunity, 2020, 53, 217-232.e5.	14.3	161

3

#	Article	IF	CITATIONS
37	Systems immunology. Current Opinion in Immunology, 2020, 65, 79-82.	5.5	7
38	Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell, 2020, 183, 1479-1495.e20.	28.9	449
39	The science and medicine of human immunology. Science, 2020, 369, .	12.6	147
40	Injectable Hydrogels for Sustained Codelivery of Subunit Vaccines Enhance Humoral Immunity. ACS Central Science, 2020, 6, 1800-1812.	11.3	113
41	Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature, 2020, 588, 670-675.	27.8	273
42	Upregulation of CD47 Is a Host Checkpoint Response to Pathogen Recognition. MBio, 2020, 11, .	4.1	29
43	T cell analysis in vaccination. Current Opinion in Immunology, 2020, 65, 70-73.	5.5	4
44	Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nature Biotechnology, 2020, 38, 1194-1202.	17.5	282
45	Cardiovascular Complications in Patients with COVID-19: Consequences of Viral Toxicities and Host Immune Response. Current Cardiology Reports, 2020, 22, 32.	2.9	146
46	Comprehensive T cell repertoire characterization of non-small cell lung cancer. Nature Communications, 2020, 11, 603.	12.8	140
47	Distinct immune characteristics distinguish hereditary and idiopathic chronic pancreatitis. Journal of Clinical Investigation, 2020, 130, 2705-2711.	8.2	21
48	Mass Cytometry Defines Virus-Specific CD4+ T Cells in Influenza Vaccination. ImmunoHorizons, 2020, 4, 774-788.	1.8	3
49	146â€Alloantigen-specific Tr1 cells designed to prevent GvHD have a distinct molecular identity and suppress through CTLA-4 and PD-1. , 2020, , .		0
50	Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature, 2019, 572, 481-487.	27.8	141
51	Recent progress in the analysis of $\hat{I}\pm\hat{I}^2$ T cell and B cell receptor repertoires. Current Opinion in Immunology, 2019, 59, 109-114.	5.5	31
52	Acute myeloid leukemia immunopeptidome reveals HLA presentation of mutated nucleophosmin. PLoS ONE, 2019, 14, e0219547.	2.5	38
53	Clonal replacement of tumor-specific T cells following PD-1 blockade. Nature Medicine, 2019, 25, 1251-1259.	30.7	974
54	Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature, 2019, 571, 205-210.	27.8	351

4

#	Article	IF	CITATIONS
55	Computational and Systems Immunology: A Student's Perspective. Trends in Immunology, 2019, 40, 665-668.	6.8	2
56	Increased T Cell Differentiation and Cytolytic Function in Bangladeshi Compared to American Children. Frontiers in Immunology, 2019, 10, 2239.	4.8	14
57	Predicting HLA class II antigen presentation through integrated deep learning. Nature Biotechnology, 2019, 37, 1332-1343.	17.5	218
58	The FluPRINT dataset, a multidimensional analysis of the influenza vaccine imprint on the immune system. Scientific Data, 2019, 6, 214.	5.3	11
59	Pregnancy-Induced Alterations in NK Cell Phenotype and Function. Frontiers in Immunology, 2019, 10, 2469.	4.8	36
60	Emergent high fatality lung disease in systemic juvenile arthritis. Annals of the Rheumatic Diseases, 2019, 78, 1722-1731.	0.9	122
61	SIMON, an Automated Machine Learning System, Reveals Immune Signatures of Influenza Vaccine Responses. Journal of Immunology, 2019, 203, 749-759.	0.8	42
62	Select sequencing of clonally expanded CD8 ⁺ T cells reveals limits to clonal expansion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8995-9001.	7.1	68
63	A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nature Medicine, 2019, 25, 487-495.	30.7	317
64	Shaping of infant B cell receptor repertoires by environmental factors and infectious disease. Science Translational Medicine, 2019, 11, .	12.4	58
65	Distinct phenotype of CD4+ T cells driving celiac disease identified in multiple autoimmune conditions. Nature Medicine, 2019, 25, 734-737.	30.7	112
66	Allergen-specific CD8+ T cells in peanut-allergic individuals. Journal of Allergy and Clinical Immunology, 2019, 143, 1948-1952.	2.9	20
67	Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature Biotechnology, 2019, 37, 252-258.	17.5	470
68	A functional subset of CD8+ T cells during chronic exhaustion is defined by SIRPα expression. Nature Communications, 2019, 10, 794.	12.8	46
69	In vivo clonal expansion and phenotypes of hypocretin-specific CD4+ T cells in narcolepsy patients and controls. Nature Communications, 2019, 10, 5247.	12.8	39
70	B-cell lymphomas present immunoglobulin neoantigens. Blood, 2019, 133, 878-881.	1.4	36
71	Maria-I: A Deep-Learning Approach for Accurate Prediction of MHC Class I Tumor Neoantigen Presentation. Blood, 2019, 134, 84-84.	1.4	2
72	Follicular Lymphoma Organoids for Investigating the Tumor Microenvironment. Blood, 2019, 134, 2799-2799.	1.4	1

#	Article	IF	CITATIONS
73	Rebooting Human Immunology. Annual Review of Immunology, 2018, 36, 843-864.	21.8	68
74	Transcript-indexed ATAC-seq for precision immune profiling. Nature Medicine, 2018, 24, 580-590.	30.7	124
75	Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell, 2018, 173, 1385-1397.e14.	28.9	250
76	Plasmablast antibody repertoires in elderly influenza vaccine responders exhibit restricted diversity but increased breadth of binding across influenza strains. Clinical Immunology, 2018, 193, 70-79.	3.2	19
77	A Macrophage Colony-Stimulating-Factor-Producing Î ³ δT Cell Subset Prevents Malarial Parasitemic Recurrence. Immunity, 2018, 48, 350-363.e7.	14.3	105
78	Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses InÂVivo. Cell Stem Cell, 2018, 22, 501-513.e7.	11.1	125
79	Value of Circulating Cytokine Profiling During Submaximal Exercise Testing in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Scientific Reports, 2018, 8, 2779.	3.3	29
80	Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). Molecular and Cellular Proteomics, 2018, 17, 764-775.	3.8	138
81	Comparison of CyTOF assays across sites: Results of a six-center pilot study. Journal of Immunological Methods, 2018, 453, 37-43.	1.4	50
82	<i>Bifidobacterium</i> can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 157-161.	7.1	152
83	Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell, 2018, 172, 549-563.e16.	28.9	226
84	Will Systems Biology Deliver Its Promise and Contribute to the Development of New or Improved Vaccines?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028886.	5.5	5
85	Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases. Nature Communications, 2018, 9, 4735.	12.8	128
86	Histone H3 lysine 4 methylation signature associated with human undernutrition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11264-E11273.	7.1	23
87	Organoid Modeling of the Tumor Immune Microenvironment. Cell, 2018, 175, 1972-1988.e16.	28.9	870
88	Advanced model systems and tools for basic and translational human immunology. Genome Medicine, 2018, 10, 73.	8.2	68
89	Allelic resolution NGS HLA typing of Class I and Class II loci and haplotypes in Cape Town, South Africa. Human Immunology, 2018, 79, 839-847.	2.4	22
90	Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC Binding. Cell, 2018, 174, 672-687.e27.	28.9	229

#	Article	IF	CITATIONS
91	A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes. Nature, 2018, 560, 644-648.	27.8	184
92	Phylogenetic analysis of the human antibody repertoire reveals quantitative signatures of immune senescence and aging. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1105-1110.	7.1	120
93	Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nature Medicine, 2017, 23, 174-184.	30.7	304
94	T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone. Journal of Virology, 2017, 91, .	3.4	11
95	Multicenter Systems Analysis of Human Blood Reveals Immature Neutrophils in Males and During Pregnancy. Journal of Immunology, 2017, 198, 2479-2488.	0.8	66
96	Human immune system variation. Nature Reviews Immunology, 2017, 17, 21-29.	22.7	466
97	Identifying specificity groups in the T cell receptor repertoire. Nature, 2017, 547, 94-98.	27.8	825
98	Systems immunology: just getting started. Nature Immunology, 2017, 18, 725-732.	14.5	194
99	Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature, 2017, 543, 723-727.	27.8	232
100	Reply to Roerink et al: Methods for recruitment, serum separation, and storage were the same for patients and controls. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9436-E9436.	7.1	0
101	Dynamics of the human antibody repertoire after B cell depletion in systemic sclerosis. Science Immunology, 2017, 2, .	11.9	41
102	Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Science Immunology, 2017, 2, .	11.9	122
103	Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proceedings of the United States of America, 2017, 114, E7150-E7158.	7.1	283
104	Clonal Expansion and Interrelatedness of Distinct B-Lineage Compartments in Multiple Myeloma Bone Marrow. Cancer Immunology Research, 2017, 5, 744-754.	3.4	17
105	High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity, 2017, 47, 1037-1050.e6.	14.3	231
106	Adaptive Immune Receptor Repertoire Community recommendations for sharing immune-repertoire sequencing data. Nature Immunology, 2017, 18, 1274-1278.	14.5	163
107	Continuous immunotypes describe human immune variation and predict diverse responses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6097-E6106.	7.1	104
108	The Repertoire Dissimilarity Index as a method to compare lymphocyte receptor repertoires. BMC Bioinformatics, 2017, 18, 155.	2.6	52

#	Article	IF	CITATIONS
109	Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. ELife, 2016, 5, .	6.0	113
110	Defective Signaling in the JAK-STAT Pathway Tracks with Chronic Inflammation and Cardiovascular Risk in Aging Humans. Cell Systems, 2016, 3, 374-384.e4.	6.2	107
111	Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nature Immunology, 2016, 17, 844-850.	14.5	152
112	Antigen exposure shapes the ratio between antigen-specific Tregs and conventional T cells in human peripheral blood. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6192-E6198.	7.1	37
113	Increased Proinflammatory Responses of Monocytes and Plasmacytoid Dendritic Cells to Influenza A Virus Infection During Pregnancy. Journal of Infectious Diseases, 2016, 214, 1666-1671.	4.0	57
114	Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells. Journal of Immunology, 2016, 197, 3086-3098.	0.8	70
115	In Praise of Descriptive Science: A Breath of Fresh AIRE. Cell, 2016, 166, 530-531.	28.9	2
116	Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nature Medicine, 2016, 22, 1456-1464.	30.7	271
117	MHCâ€Peptide Tetramers to Visualize Antigenâ€Specific T Cells. Current Protocols in Immunology, 2016, 115, 17.3.1-17.3.44.	3.6	54
118	Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1286-95.	7.1	115
119	Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1890-7.	7.1	90
120	CXCL13 is a plasma biomarker of germinal center activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2702-2707.	7.1	322
121	Human B-cell isotype switching origins of IgE. Journal of Allergy and Clinical Immunology, 2016, 137, 579-586.e7.	2.9	132
122	Individual heritable differences result in unique cell lymphocyte receptor repertoires of naÃ ⁻ ve and antigen-experienced cells. Nature Communications, 2016, 7, 11112.	12.8	123
123	Defective T Memory Cell Differentiation after Varicella Zoster Vaccination in Older Individuals. PLoS Pathogens, 2016, 12, e1005892.	4.7	61
124	Antigen Presentation Profiling Reveals T-Cell Recognition of Lymphoma Immunoglobulin Neoantigens. Blood, 2016, 128, 915-915.	1.4	0
125	The coreceptor CD4 is expressed in distinct nanoclusters and does not colocalize with T-cell receptor and active protein tyrosine kinase p56lck. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1604-13.	7.1	66
126	Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8+ T Lymphocytes. Immunity, 2015, 42, 929-941.	14.3	248

#	Article	IF	CITATIONS
127	Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. Journal of Allergy and Clinical Immunology, 2015, 136, 1326-1336.	2.9	66
128	Pregnancy Does Not Attenuate the Antibody or Plasmablast Response to Inactivated Influenza Vaccine. Journal of Infectious Diseases, 2015, 212, 861-870.	4.0	49
129	Not-So-Negative Selection. Immunity, 2015, 43, 833-835.	14.3	32
130	Adenoviral Vector Vaccination Induces a Conserved Program of CD8+ T Cell Memory Differentiation in Mouse and Man. Cell Reports, 2015, 13, 1578-1588.	6.4	56
131	Variation in the Human Immune System Is Largely Driven by Non-Heritable Influences. Cell, 2015, 160, 37-47.	28.9	828
132	Flexibility for specificity. Science, 2015, 347, 371-372.	12.6	4
133	Mass Cytometry Analysis Shows That a Novel Memory Phenotype B Cell Is Expanded in Multiple Myeloma. Cancer Immunology Research, 2015, 3, 650-660.	3.4	38
134	Tetramers reveal IL-17–secreting CD4 ⁺ T cells that are specific for U1-70 in lupus and mixed connective tissue disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3044-3049.	7.1	22
135	<i>mir-181a-1/b-1</i> Modulates Tolerance through Opposing Activities in Selection and Peripheral T Cell Function. Journal of Immunology, 2015, 195, 1470-1479.	0.8	43
136	Immunologic Network and Response to Intramyocardial CD34+ Stem Cell Therapy in Patients With Dilated Cardiomyopathy. Journal of Cardiac Failure, 2015, 21, 572-582.	1.7	11
137	A Population Response Analysis Approach To Assign Class II HLA-Epitope Restrictions. Journal of Immunology, 2015, 194, 6164-6176.	0.8	51
138	Cytomegalovirus infection enhances the immune response to influenza. Science Translational Medicine, 2015, 7, 281ra43.	12.4	277
139	William Erwin Paul (1936-2015). Cell, 2015, 163, 529-530.	28.9	1
140	Distinct Roles of Cytoskeletal Components in Immunological Synapse Formation and Directed Secretion. Journal of Immunology, 2015, 195, 4117-4125.	0.8	36
141	New approaches to understanding the immune response to vaccination and infection. Vaccine, 2015, 33, 5271-5281.	3.8	103
142	lgH sequences in common variable immune deficiency reveal altered B cell development and selection. Science Translational Medicine, 2015, 7, 302ra135.	12.4	77
143	Distinct Patterns of B-Cell Activation and Priming by Natural Influenza Virus Infection Versus Inactivated Influenza Vaccination. Journal of Infectious Diseases, 2015, 211, 1051-1059.	4.0	27
144	CD161 Defines a Transcriptional and Functional Phenotype across Distinct Human T Cell Lineages. Cell Reports, 2014, 9, 1075-1088.	6.4	264

#	Article	IF	CITATIONS
145	A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Science Translational Medicine, 2014, 6, 261ra153.	12.4	297
146	OpenCyto: An Open Source Infrastructure for Scalable, Robust, Reproducible, and Automated, End-to-End Flow Cytometry Data Analysis. PLoS Computational Biology, 2014, 10, e1003806.	3.2	185
147	Clinical recovery from surgery correlates with single-cell immune signatures. Science Translational Medicine, 2014, 6, 255ra131.	12.4	285
148	Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding (ACCENSE). Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 202-207.	7.1	220
149	The role of the reporting framework MIATA within current efforts to advance immune monitoring. Journal of Immunological Methods, 2014, 409, 6-8.	1.4	4
150	Computational resources for high-dimensional immune analysis from the Human Immunology Project Consortium. Nature Biotechnology, 2014, 32, 146-148.	17.5	65
151	Effects of Aging, Cytomegalovirus Infection, and EBV Infection on Human B Cell Repertoires. Journal of Immunology, 2014, 192, 603-611.	0.8	166
152	Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nature Biotechnology, 2014, 32, 149-157.	17.5	135
153	Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 869-874.	7.1	542
154	Human Responses to Influenza Vaccination Show Seroconversion Signatures and Convergent Antibody Rearrangements. Cell Host and Microbe, 2014, 16, 105-114.	11.0	246
155	Association between Latent Proviral Characteristics and Immune Activation in Antiretrovirus-Treated Human Immunodeficiency Virus Type 1-Infected Adults. Journal of Virology, 2014, 88, 8629-8639.	3.4	6
156	Enhanced natural killer-cell and T-cell responses to influenza A virus during pregnancy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14506-14511.	7.1	95
157	The Split Virus Influenza Vaccine rapidly activates immune cells through FcÎ ³ receptors. Vaccine, 2014, 32, 5989-5997.	3.8	34
158	Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nature Biotechnology, 2014, 32, 684-692.	17.5	457
159	Deconstructing the Peptide-MHC Specificity of T Cell Recognition. Cell, 2014, 157, 1073-1087.	28.9	483
160	DRUG-INDUCED mRNA SIGNATURES ARE ENRICHED FOR THE MINORITY OF GENES THAT ARE HIGHLY HERITABLE. , 2014, , .		1
161	Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Molecular Systems Biology, 2013, 9, 659.	7.2	173
162	Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nature Biotechnology, 2013, 31, 623-629.	17.5	265

#	Article	IF	CITATIONS
163	Antiviral memory phenotype T cells in unexposed adults. Immunological Reviews, 2013, 255, 95-109.	6.0	39
164	A Single Peptide-Major Histocompatibility Complex Ligand Triggers Digital Cytokine Secretion in CD4+ T Cells. Immunity, 2013, 39, 846-857.	14.3	317
165	CD4 ⁺ T Cell Autoimmunity to Hypocretin/Orexin and Cross-Reactivity to a 2009 H1N1 Influenza A Epitope in Narcolepsy. Science Translational Medicine, 2013, 5, 216ra176.	12.4	83
166	Human Circulating PD-1+CXCR3â^'CXCR5+ Memory Tfh Cells Are Highly Functional and Correlate with Broadly Neutralizing HIV Antibody Responses. Immunity, 2013, 39, 758-769.	14.3	790
167	The Interdisciplinary Science of T-cell Recognition. Advances in Immunology, 2013, 119, 1-50.	2.2	43
168	Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nature Immunology, 2013, 14, 262-270.	14.5	188
169	Virus-Specific CD4+ Memory-Phenotype T Cells Are Abundant in Unexposed Adults. Immunity, 2013, 38, 373-383.	14.3	404
170	How the immune system talks to itself: the varied role of synapses. Immunological Reviews, 2013, 251, 65-79.	6.0	83
171	Systems Immunology. , 2013, , 481-497.		0
172	Lineage Structure of the Human Antibody Repertoire in Response to Influenza Vaccination. Science Translational Medicine, 2013, 5, 171ra19.	12.4	339
173	The Promised Land of Human Immunology. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 203-213.	1.1	16
174	Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Molecular Systems Biology, 2013, 9, 680.	7.2	7
175	Genetic and Environmental Determinants of Human NK Cell Diversity Revealed by Mass Cytometry. Science Translational Medicine, 2013, 5, 208ra145.	12.4	491
176	Dietary gluten triggers concomitant activation of CD4 ⁺ and CD8 ⁺ αβ T cells and γδT cells in celiac disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13073-13078.	7.1	178
177	Characterization of Influenza Vaccine Immunogenicity Using Influenza Antigen Microarrays. PLoS ONE, 2013, 8, e64555.	2.5	44
178	Immunology Taught by Humans. Science Translational Medicine, 2012, 4, 117fs2.	12.4	32
179	TCR Signaling Emerges from the Sum of Many Parts. Frontiers in Immunology, 2012, 3, 159.	4.8	65
180	High-throughput, high-fidelity HLA genotyping with deep sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8676-8681.	7.1	200

#	Article	IF	CITATIONS
181	Cytometry by Time-of-Flight Shows Combinatorial Cytokine Expression and Virus-Specific Cell Niches within a Continuum of CD8+ T Cell Phenotypes. Immunity, 2012, 36, 142-152.	14.3	534
182	The Stanford Data Miner: a novel approach for integrating and exploring heterogeneous immunological data. Journal of Translational Medicine, 2012, 10, 62.	4.4	9
183	Determination of Interaction Kinetics between the T Cell Receptor and Peptide-Loaded MHC Class II via Single-Molecule Diffusion Measurements. Biophysical Journal, 2012, 103, L17-L19.	0.5	36
184	Photocrosslinkable pMHC monomers stain T cells specifically and cause ligand-bound TCRs to be 'preferentially' transported to the cSMAC. Nature Immunology, 2012, 13, 674-680.	14.5	44
185	Interrogating the repertoire: broadening the scope of peptide–MHC multimer analysis. Nature Reviews Immunology, 2011, 11, 551-558.	22.7	106
186	Plasmablast-derived polyclonal antibody response after influenza vaccination. Journal of Immunological Methods, 2011, 365, 67-75.	1.4	51
187	Structural Basis of Specificity and Cross-Reactivity in T Cell Receptors Specific for Cytochrome <i>c</i> –I-Ek. Journal of Immunology, 2011, 186, 5823-5832.	0.8	59
188	CD4 ⁺ T-cell synapses involve multiple distinct stages. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17099-17104.	7.1	114
189	T-cell receptor ligation induces distinct signaling pathways in naÃ ⁻ ve vs. antigen-experienced T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1549-1554.	7.1	96
190	Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies. Journal of Clinical Investigation, 2011, 121, 3109-3119.	8.2	268
191	TCR–peptide–MHC interactions in situ show accelerated kinetics and increased affinity. Nature, 2010, 463, 963-967.	27.8	449
192	TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunology, 2010, 11, 90-96.	14.5	571
193	A model for harmonizing flow cytometry in clinical trials. Nature Immunology, 2010, 11, 975-978.	14.5	130
194	Peptide-MHC heterodimers show that thymic positive selection requires a more restricted set of self-peptides than negative selection. Journal of Experimental Medicine, 2010, 207, 1223-1234.	8.5	52
195	CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16916-16921.	7.1	167
196	Evidence for a functional sidedness to the αβTCR. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5094-5099.	7.1	69
197	An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nature Immunology, 2009, 10, 1162-1169.	14.5	235
198	Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nature Methods, 2009, 6, 497-499.	19.0	158

#	Article	IF	CITATIONS
199	"MIATAâ€â€"Minimal Information about T Cell Assays. Immunity, 2009, 31, 527-528.	14.3	178
200	A Prescription for Human Immunology. Immunity, 2008, 29, 835-838.	14.3	315
201	Thymic Selection Determines γδT Cell Effector Fate: Antigen-Naive Cells Make Interleukin-17 and Antigen-Experienced Cells Make Interferon γ. Immunity, 2008, 29, 90-100.	14.3	430
202	Shouts, whispers and the kiss of death: directional secretion in T cells. Nature Immunology, 2008, 9, 1105-1111.	14.5	184
203	Low Ligand Requirement for Deletion and Lack of Synapses in Positive Selection Enforce the Gauntlet of Thymic T Cell Maturation. Immunity, 2008, 29, 734-745.	14.3	48
204	TOWARDS A CYTOKINE-CELL INTERACTION KNOWLEDGEBASE OF THE ADAPTIVE IMMUNE SYSTEM. , 2008, , .		10
205	miR-181a Is an Intrinsic Modulator of T Cell Sensitivity and Selection. Cell, 2007, 129, 147-161.	28.9	1,088
206	Spatial and Temporal Dynamics of T Cell Receptor Signaling with a Photoactivatable Agonist. Immunity, 2007, 27, 76-88.	14.3	218
207	The αβ T Cell Repertoire Comes into Focus. Immunity, 2007, 27, 179-180.	14.3	5
208	T Cells as a Self-Referential, Sensory Organ. Annual Review of Immunology, 2007, 25, 681-695.	21.8	141
209	Blimp-1 over Budapest. Nature Immunology, 2007, 8, 445-447.	14.5	7
210	T cells use two directionally distinct pathways for cytokine secretion. Nature Immunology, 2006, 7, 247-255.	14.5	396
211	Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18992-18997.	7.1	370
212	A Large T Cell Invagination with CD2 Enrichment Resets Receptor Engagement in the Immunological Synapse. Journal of Immunology, 2006, 177, 4402-4413.	0.8	34
213	Agonist/endogenous peptide–MHC heterodimers drive T cell activation and sensitivity. Nature, 2005, 434, 238-243.	27.8	313
214	Marked Differences in Human Melanoma Antigen-Specific T Cell Responsiveness after Vaccination Using a Functional Microarray. PLoS Medicine, 2005, 2, e265.	8.4	77
215	The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development (Cambridge), 2005, 132, 1315-1325.	2.5	307
216	T cell receptor antagonism interferes with MHC clustering and integrin patterning during immunological synapse formation. Journal of Cell Biology, 2004, 166, 579-590.	5.2	41

#	Article	IF	CITATIONS
217	Response to 'Tracking synapse-associated TCRs'. Nature Immunology, 2004, 5, 117-117.	14.5	Ο
218	T cell killing does not require the formation of a stable mature immunological synapse. Nature Immunology, 2004, 5, 524-530.	14.5	496
219	A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nature Immunology, 2004, 5, 531-538.	14.5	177
220	CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nature Immunology, 2004, 5, 791-799.	14.5	228
221	The evolutionary and structural †logic' of antigen receptor diversity. Seminars in Immunology, 2004, 16, 239-243.	5.6	58
222	The problem of plain vanilla peptides. Nature Immunology, 2003, 4, 649-650.	14.5	21
223	Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nature Immunology, 2003, 4, 749-755.	14.5	366
224	T-cell-antigen recognition and the immunological synapse. Nature Reviews Immunology, 2003, 3, 973-983.	22.7	506
225	MHCâ€Peptide Tetramers to Visualize Antigenâ€Specific T Cells. Current Protocols in Immunology, 2003, 53, Unit 17.3.	3.6	38
226	Dynamics of Cell Surface Molecules During T Cell Recognition. Annual Review of Biochemistry, 2003, 72, 717-742.	11.1	105
227	Distinct Molecular Mechanisms Account for the Specificity of Two Different T-Cell Receptorsâ€. Biochemistry, 2003, 42, 4709-4716.	2.5	52
228	Evidence that Structural Rearrangements and/or Flexibility during TCR Binding Can Contribute to T Cell Activation. Molecular Cell, 2003, 12, 1367-1378.	9.7	243
229	Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. Journal of Clinical Investigation, 2003, 111, 639-647.	8.2	189
230	A New Trigger for T Cells. Cell, 2002, 110, 285-287.	28.9	48
231	Imaging Synapse Formation during Thymocyte Selection. Immunity, 2002, 16, 595-606.	14.3	134
232	Dynamics of p56lck Translocation to the T Cell Immunological Synapse following Agonist and Antagonist Stimulation. Immunity, 2002, 17, 809-822.	14.3	155
233	Two-step binding mechanism for T-cell receptor recognition of peptide–MHC. Nature, 2002, 418, 552-556.	27.8	258
234	Direct observation of ligand recognition by T cells. Nature, 2002, 419, 845-849.	27.8	725

#	Article	lF	CITATIONS
235	Costimulation and endogenous MHC ligands contribute to T cell recognition. Nature Immunology, 2002, 3, 42-47.	14.5	285
236	THEIMMUNOLOGICALSYNAPSE. Annual Review of Immunology, 2001, 19, 375-396.	21.8	821
237	Identification of Self Through Two-Dimensional Chemistry and Synapses. Annual Review of Cell and Developmental Biology, 2001, 17, 133-157.	9.4	139
238	A Kinetic Window Constricts the T Cell Receptor Repertoire in the Thymus. Immunity, 2001, 14, 243-252.	14.3	73
239	Direct Functional Analysis of Epitope-Specific CD8+T Cells in Peripheral Blood. Viral Immunology, 2001, 14, 59-69.	1.3	52
240	Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nature Medicine, 2000, 6, 1018-1023.	30.7	651
241	Melanocyte Destruction after Antigen-Specific Immunotherapy of Melanoma. Journal of Experimental Medicine, 2000, 192, 1637-1644.	8.5	414
242	Diversity in the CDR3 Region of VH Is Sufficient for Most Antibody Specificities. Immunity, 2000, 13, 37-45.	14.3	693
243	Differential Clustering of CD4 and CD3zeta During T Cell Recognition. Science, 2000, 289, 1349-1352.	12.6	354
244	Kinetics of Peptide Binding to the Class II MHC Protein lâ^'Ekâ€. Biochemistry, 2000, 39, 1048-1058.	2.5	48
245	Visualizing lymphocyte recognition. Immunology and Cell Biology, 1999, 77, 186-187.	2.3	6
246	Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Medicine, 1999, 5, 677-685.	30.7	1,033
247	Inhibition of thymocyte positive selection by natural MHC: peptide ligands. European Journal of Immunology, 1999, 29, 394-402.	2.9	6
248	The Immunological Synapse: A Molecular Machine Controlling T Cell Activation. Science, 1999, 285, 221-227.	12.6	2,861
249	A Kinetic Basis For T Cell Receptor Repertoire Selection during an Immune Response. Immunity, 1999, 10, 485-492.	14.3	483
250	Induction of Rapid T Cell Activation and Tolerance by Systemic Presentation of an Orally Administered Antigen. Immunity, 1998, 8, 667-673.	14.3	207
251	Initiation of Signal Transduction through the T Cell Receptor Requires the Multivalent Engagement of Peptide/MHC Ligands. Immunity, 1998, 9, 459-466.	14.3	349
252	Kinetic Isomers of a Class II MHCâ^'Peptide Complex. Biochemistry, 1998, 37, 17371-17380.	2.5	30

#	Article	IF	CITATIONS
253	LIGAND RECOGNITION BY $\hat{I} \pm \hat{I}^2$ T CELL RECEPTORS. Annual Review of Immunology, 1998, 16, 523-544.	21.8	852
254	CD4 Augments the Response of a T Cell to Agonist but Not to Antagonist Ligands. Immunity, 1997, 7, 379-385.	14.3	103
255	Ligand-specific oligomerization of T-cell receptor molecules. Nature, 1997, 387, 617-620.	27.8	221
256	A TCR Binds to Antagonist Ligands with Lower Affinities and Faster Dissociation Rates Than to Agonists. Immunity, 1996, 5, 53-61.	14.3	395
257	Directed evolution studies with combinatorial libraries of T4 lysozyme mutants. Molecular Diversity, 1996, 1, 97-108.	3.9	6
258	Enumeration and Characterization of Memory Cells in the TH Compartment. Immunological Reviews, 1996, 150, 5-21.	6.0	48
259	Serial engagement proposed. Nature, 1995, 375, 104-104.	27.8	20
260	CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+T cells. Nature, 1995, 376, 181-184.	27.8	473
261	Mapping T-cell receptor–peptide contacts by variant peptide immunization of single-chain transgenics. Nature, 1992, 355, 224-230.	27.8	512
262	Generation of monoclonal antibodies against soluble human T cell receptor polypeptides. European Journal of Immunology, 1991, 21, 2111-2119.	2.9	27
263	Phenotypic differences between $\hat{l}\pm\hat{l}^2$ versus \hat{l}^2 T-cell receptor transgenic mice undergoing negative selection. Nature, 1989, 340, 559-562.	27.8	148
264	The adult T-cell receptor 5-chain is diverse and distinct from that of fetal thymocytes. Nature, 1988, 331, 627-631.	27.8	333
265	T-cell antigen receptor genes and T-cell recognition. Nature, 1988, 334, 395-402.	27.8	3,008
266	A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature, 1987, 327, 677-682.	27.8	473
267	Identification and sequence of a fourth human T cell antigen receptor chain. Nature, 1987, 330, 569-572.	27.8	161
268	T-cell receptor \hat{l} gene rearrangements in early thymocytes. Nature, 1987, 330, 722-727.	27.8	319
269	Isolation of a cDNA clone corresponding to an X-linked gene family (XLR) closely linked to the murine immunodeficiency disorder xid. Nature, 1985, 314, 369-372.	27.8	64
270	Expression of an X-linked gene family (XLR) in late-stage B cells and its alteration by the xid mutation. Nature, 1985, 314, 372-374.	27.8	53

#	Article	IF	CITATIONS
271	Expression of genes of the T-cell antigen receptor complex in precursor thymocytes. Nature, 1985, 315, 765-768.	27.8	133
272	Variability and repertoire size of T-cell receptor VÎ \pm gene segments. Nature, 1985, 317, 430-434.	27.8	145
273	Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature, 1984, 308, 149-153.	27.8	1,220
274	Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature, 1984, 308, 153-158.	27.8	725
275	Somatic recombination in a murine T-cell receptor gene. Nature, 1984, 309, 322-326.	27.8	448
276	Genomic organization and sequence of T-cell receptor β-chain constant- and joining-region genes. Nature, 1984, 310, 387-391.	27.8	386
277	Localization of a T-cell receptor diversity-region element. Nature, 1984, 310, 421-423.	27.8	161
278	A third type of murine T-cell receptor gene. Nature, 1984, 312, 31-35.	27.8	494
279	A Murine T Cell Receptor Gene Complex: Isolation, Structure and Rearrangement. Immunological Reviews, 1984, 81, 235-258.	6.0	87