Miao Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8939125/publications.pdf

Version: 2024-02-01

		279798	315739
48	1,495	23	38
papers	citations	h-index	g-index
52	52	52	1173
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Materialia, 2012, 60, 6312-6321.	7.9	104
2	On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing. Corrosion Science, 2017, 128, 140-153.	6.6	104
3	In situ Evidence of Defect Cluster Absorption by Grain Boundaries in Kr Ion Irradiated Nanocrystalline Ni. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1966-1974.	2.2	103
4	In Situ Study of Defect Migration Kinetics and Self-Healing of Twin Boundaries in Heavy Ion Irradiated Nanotwinned Metals. Nano Letters, 2015, 15, 2922-2927.	9.1	90
5	Radiation damage and irradiation-assisted stress corrosion cracking of additively manufactured 316L stainless steels. Journal of Nuclear Materials, 2019, 513, 33-44.	2.7	89
6	Response of equal channel angular extrusion processed ultrafine-grained T91 steel subjected to high temperature heavy ion irradiation. Acta Materialia, 2014, 74, 285-295.	7.9	78
7	A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment. Acta Materialia, 2016, 112, 361-377.	7.9	76
8	Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers. Acta Materialia, 2015, 84, 393-404.	7.9	75
9	Insights into the stress corrosion cracking of solution annealed alloy 690 in simulated pressurized water reactor primary water under dynamic straining. Acta Materialia, 2018, 151, 321-333.	7.9	66
10	Tailoring the strength and ductility of T91 steel by partial tempering treatment. Acta Materialia, 2019, 169, 209-224.	7.9	59
11	Microstructure refinement and strengthening mechanisms of a 12Cr ODS steel processed by equal channel angular extrusion. Journal of Alloys and Compounds, 2013, 577, 247-256.	5.5	52
12	Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations. Materials Research Letters, 2018, 6, 584-591.	8.7	46
13	The oxidation of alloy 690 in simulated pressurized water reactor primary water. Corrosion Science, 2017, 126, 227-237.	6.6	44
14	Enhancement of strength and ductility in ultrafine-grained T91 steel through thermomechanical treatments. Journal of Materials Science, 2013, 48, 7360-7373.	3.7	43
15	Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces. Journal of Materials Research, 2015, 30, 1300-1309.	2.6	34
16	Probing long-range ordering in nickel-base alloys with proton irradiation. Acta Materialia, 2018, 156, 446-462.	7.9	33
17	Characterization of alloy 718 subjected to different thermomechanical treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 691, 195-202.	5.6	30
18	On the Thermal Stability of Dislocation Cellular Structures in Additively Manufactured Austenitic Stainless Steels: Roles of Heavy Element Segregation and Stacking Fault Energy. Jom, 2020, 72, 4232-4243.	1.9	28

#	Article	IF	Citations
19	Radiation tolerance of commercial and advanced alloys for core internals: a comprehensive microstructural characterization. Journal of Nuclear Materials, 2018, 510, 396-413.	2.7	27
20	In situ studies of radiation induced crystallization in Fe/a-Y2O3 nanolayers. Journal of Nuclear Materials, 2014, 452, 321-327.	2.7	26
21	Irradiation assisted stress corrosion cracking of commercial and advanced alloys for light water reactor core internals. Journal of Nuclear Materials, 2019, 515, 52-70.	2.7	26
22	Phase constitution effect on the ductility of low alloy multiphase transformation induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 569, 137-143.	5.6	25
23	Grain refinement mechanisms and strength-hardness correlation of ultra-fine grained grade 91 steel processed by equal channel angular extrusion. International Journal of Pressure Vessels and Piping, 2019, 172, 212-219.	2.6	25
24	<i>In situ</i> Observation of Defect Annihilation in Kr Ion-Irradiated Bulk Fe/Amorphous-Fe ₂ Zr Nanocomposite Alloy. Materials Research Letters, 2015, 3, 35-42.	8.7	20
25	Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106965119.	7.1	19
26	Tunable mechanical property and strain hardening behavior of a single-phase CoFeNi2V0.5Mo0.2 high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 776, 139027.	5.6	16
27	In situ studies on superior thermal stability of bulk FeZr nanocomposites. Acta Materialia, 2015, 101, 125-135.	7.9	14
28	Irradiationâ€Induced Extremes Create Hierarchical Faceâ€IBodyâ€Centeredâ€Cubic Phases in Nanostructured High Entropy Alloys. Advanced Materials, 2020, 32, 2002652.	21.0	14
29	Effect of deformation level and orientation on SCC of 316L stainless steel in simulated light water environments. Journal of Nuclear Materials, 2020, 531, 152038.	2.7	14
30	A comparison study of void swelling in additively manufactured and cold-worked 316L stainless steels under ion irradiation. Journal of Nuclear Materials, 2021, 551, 152946.	2.7	14
31	A high-resolution characterization of irradiation-assisted stress corrosion cracking of proton-irradiated 316L stainless steel in simulated pressurized water reactor primary water. Corrosion Science, 2022, 199, 110187.	6.6	14
32	Atomic scale structure dominated FCC and B2 responses to He ion irradiation in eutectic high-entropy alloy AlCoCrFeNi2.1. Journal of Materials Science and Technology, 2022, 129, 87-95.	10.7	13
33	Elastic strain energy control of the precipitate free zone around primary carbides in nickel base alloy 725. Acta Materialia, 2016, 120, 138-149.	7.9	12
34	Microstructural characterization of cold-worked 316 stainless steel flux thimble tubes irradiated up to 100 dpa in a commercial Pressurized Water Reactor. Journal of Nuclear Materials, 2020, 541, 152400.	2.7	11
35	Insight into the acceleration in oxidation kinetics ahead of stress corrosion crack of alloy 690 in simulated PWR primary water. Corrosion Science, 2020, 176, 108943.	6.6	9
36	Effects of heat treatment on corrosion fatigue and stress corrosion crack growth of additive-manufactured Alloy 800H in high-temperature water. Corrosion Science, 2021, 191, 109739.	6.6	9

#	Article	IF	CITATIONS
37	Compositionally graded specimen made by laser additive manufacturing as a high-throughput method to study radiation damages and irradiation-assisted stress corrosion cracking. Journal of Nuclear Materials, 2022, 560, 153493.	2.7	9
38	Microstructure and tensile behavior of small scale resistance spot welded sandwich bulk metallic glasses. Journal of Non-Crystalline Solids, 2016, 447, 300-306.	3.1	6
39	Surface hardening of metals at room temperature by nanoparticle-laden cavitating waterjets. Journal of Materials Processing Technology, 2020, 275, 116316.	6.3	6
40	Comparison of Modified Mohr–Coulomb Model and Bai–Wierzbicki Model for Constructing 3D Ductile Fracture Envelope of AA6063. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	3.7	3
41	A microscopic and crystallographic study of proton irradiated alloy 718. Journal of Nuclear Materials, 2021, 551, 152954.	2.7	3
42	Sensitization, desensitization, and carbide evolution of Alloy 800H made by laser powder bed fusion. Additive Manufacturing, 2022, 50, 102547.	3.0	2
43	Microstructural Study on the Stress Corrosion Cracking of Alloy 690 in Simulated Pressurized Water Reactor Primary Environment. Minerals, Metals and Materials Series, 2018, , 535-545.	0.4	1
44	Microstructural Study on the Stress Corrosion Cracking of Alloy 690 in Simulated Pressurized Water Reactor Primary Environment. Minerals, Metals and Materials Series, 2019, , 535-545.	0.4	1
45	Stress Corrosion Cracking Behavior of Alloy 718 Subjected to Various Thermal Mechanical Treatments in Primary Water. Minerals, Metals and Materials Series, 2018, , 293-305.	0.4	O
46	Advanced Characterization of Additively Manufactured 316L Stainless Steel for Nuclear Applications. Microscopy and Microanalysis, 2021, 27, 2160-2161.	0.4	0
47	Irradiation Assisted Stress Corrosion Cracking (IASCC) of Nickel-Base Alloys in Light Water Reactors Environments Part II: Stress Corrosion Cracking. Minerals, Metals and Materials Series, 2018, , 961-972.	0.4	O
48	Highâ€Entropy Alloys: Irradiationâ€Induced Extremes Create Hierarchical Faceâ€/Bodyâ€Centeredâ€Cubic Phases in Nanostructured High Entropy Alloys (Adv. Mater. 39/2020). Advanced Materials, 2020, 32, .	21.0	0