Caroline Mellot-Draznieks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8938334/publications.pdf

Version: 2024-02-01

41 papers

10,358 citations

29 h-index

172457

243625 44 g-index

46 all docs

46 docs citations

46 times ranked 10181 citing authors

#	Article	IF	Citations
1	A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 2005, 309, 2040-2042.	12.6	4,615
2	Crystallized Frameworks with Giant Pores:  Are There Limits to the Possible?. Accounts of Chemical Research, 2005, 38, 217-225.	15.6	1,286
3	Hydrogen Storage in the Giant-Pore Metal–Organic Frameworks MIL-100 and MIL-101. Angewandte Chemie - International Edition, 2006, 45, 8227-8231.	13.8	716
4	Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 2013, 135, 10942-10945.	13.7	701
5	A Fully Noble Metal-Free Photosystem Based on Cobalt-Polyoxometalates Immobilized in a Porphyrinic Metal–Organic Framework for Water Oxidation. Journal of the American Chemical Society, 2018, 140, 3613-3618.	13.7	272
6	Functionalized MOFs for Enhanced CO ₂ Capture. Crystal Growth and Design, 2010, 10, 2839-2841.	3.0	258
7	A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie, 2004, 116, 6456-6461.	2.0	256
8	Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm, 2009, 11, 2272.	2.6	217
9	Maximizing the Photocatalytic Activity of Metal–Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH ₂ . Journal of the American Chemical Society, 2017, 139, 8222-8228.	13.7	195
10	Photocatalytic Carbon Dioxide Reduction with Rhodiumâ€based Catalysts in Solution and Heterogenized within Metal–Organic Frameworks. ChemSusChem, 2015, 8, 603-608.	6.8	177
11	Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chemical Society Reviews, 2021, 50, 6152-6220.	38.1	164
12	Co-immobilization of a Rh Catalyst and a Keggin Polyoxometalate in the UiO-67 Zr-Based Metal–Organic Framework: In Depth Structural Characterization and Photocatalytic Properties for CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 9428-9438.	13.7	138
13	Tackling the Defect Conundrum in UiO-66: A Mixed-Linker Approach to Engineering Missing Linker Defects. Chemistry of Materials, 2017, 29, 10478-10486.	6.7	102
14	Novel Inorganic Frameworks Constructed from Double-Four-Ring (D4R) Units:Â Computational Design, Structures, and Lattice Energies of Silicate, Aluminophosphate, and Gallophosphate Candidates. Journal of the American Chemical Society, 2002, 124, 15326-15335.	13.7	86
15	A Bioinspired Nickel(bis-dithiolene) Complex as a Homogeneous Catalyst for Carbon Dioxide Electroreduction. ACS Catalysis, 2018, 8, 2030-2038.	11.2	86
16	Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study. Physical Chemistry Chemical Physics, 2016, 18, 2192-2201.	2.8	85
17	Role of computer simulations in structure prediction and structure determination: from molecular compounds to hybrid frameworks. Journal of Materials Chemistry, 2007, 17, 4348.	6.7	68
18	Molecular Porous Photosystems Tailored for Longâ€Term Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 5116-5122.	13.8	60

#	Article	IF	CITATIONS
19	Thin Films of Fully Noble Metal-Free POM@MOF for Photocatalytic Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47837-47845.	8.0	58
20	Immobilization of a Full Photosystem in the Largeâ€Pore MILâ€101 Metal–Organic Framework for CO ₂ reduction. ChemSusChem, 2018, 11, 3315-3322.	6.8	57
21	Assembling molecular species into 3D frameworks: Computational design and structure solution of hybrid materials. Progress in Solid State Chemistry, 2005, 33, 187-197.	7.2	50
22	Effect of Cations on the Structure and Electrocatalytic Response of Polyoxometalate-Based Coordination Polymers. Crystal Growth and Design, 2017, 17, 1600-1609.	3.0	50
23	Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks. CrystEngComm, 2012, 14, 374-378.	2.6	47
24	Temperature sensors based on europium polyoxometalate and mesoporous terbium metal–organic framework. Journal of Materials Chemistry C, 2021, 9, 8323-8328.	5.5	38
25	Comparison of Chiral and Racemic Forms of Zinc Cyclohexane <i>trans</i> àâ€1,2â€Dicarboxylate Frameworks: A Structural, Computational, and Calorimetric Study. Angewandte Chemie - International Edition, 2008, 47, 8634-8637.	13.8	37
26	Flexibility in a Metal–Organic Framework Material Controlled by Weak Dispersion Forces: The Bistability of MILâ€53(Al). Angewandte Chemie, 2010, 122, 7663-7665.	2.0	35
27	High-Resolution Structural Characterization of Two Layered Aluminophosphates by Synchrotron Powder Diffraction and NMR Crystallographies. Chemistry of Materials, 2013, 25, 2227-2242.	6.7	35
28	A cobalt complex with a bioinspired molybdopterin-like ligand: a catalyst for hydrogen evolution. Dalton Transactions, 2016, 45, 14754-14763.	3.3	33
29	A Simple and Nonâ€Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 3713-3718.	3.3	28
30	Molecular Level Characterization of the Structure and Interactions in Peptideâ€Functionalized Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 16531-16538.	3.3	27
31	Understanding the Photocatalytic Reduction of CO ₂ with Heterometallic Molybdenum(V) Phosphate Polyoxometalates in Aqueous Media. ACS Catalysis, 2022, 12, 453-464.	11.2	27
32	Heterogenization of a Molecular Ni Catalyst within a Porous Macroligand for the Direct C–H Arylation of Heteroarenes. ACS Catalysis, 2021, 11, 3507-3515.	11.2	22
33	Origin of the Boosting Effect of Polyoxometalates in Photocatalysis: The Case of CO ₂ Reduction by a Rh-Containing Metal–Organic Framework. ACS Catalysis, 2022, 12, 9244-9255.	11.2	22
34	Synthetic and computational assessment of a chiral metal–organic framework catalyst for predictive asymmetric transformation. Chemical Science, 2020, 11, 8800-8808.	7.4	21
35	Novel Ni-IRMOF-74 Postsynthetically Functionalized for H ₂ Storage Applications. Journal of Physical Chemistry C, 2018, 122, 28123-28132.	3.1	18
36	A Kinetic Monte Carlo Simulation Study of Synthesis Variables and Diffusion Coefficients in Early Stages of Silicate Oligomerization. Journal of Physical Chemistry C, 2015, 119, 28871-28884.	3.1	18

#	Article	IF	CITATIONS
37	Molecular Porous Photosystems Tailored for Longâ€Term Photocatalytic CO 2 Reduction. Angewandte Chemie, 2020, 132, 5154-5160.	2.0	15
38	Structure-directing role of immobilized polyoxometalates in the synthesis of porphyrinic Zr-based metal–organic frameworks. Chemical Communications, 2020, 56, 10143-10146.	4.1	14
39	Impact of Organic Templates on the Selective Formation of Zeolite Oligomers. Angewandte Chemie, 2021, 133, 7187-7192.	2.0	9
40	Impact of Organic Templates on the Selective Formation of Zeolite Oligomers. Angewandte Chemie - International Edition, 2021, 60, 7111-7116.	13.8	7
41	Rücktitelbild: Impact of Organic Templates on the Selective Formation of Zeolite Oligomers (Angew.) Tj ETQc	1 1 0 784.	314 ₀ rgBT/Ove