Lujun Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8936394/publications.pdf

Version: 2024-02-01

83	2,852 citations	147801	189892
papers	citations	h-index	g-index
83	83	83	2037
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface modification of helical carbon nanocoil (CNC) with N-doped and Co-anchored carbon layer for efficient microwave absorption. Journal of Colloid and Interface Science, 2022, 608, 1894-1906.	9.4	26
2	Lotus root structure-inspired Ti3C2-MXene-Based flexible and wearable strain sensor with ultra-high sensitivity and wide sensing range. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106702.	7.6	23
3	A flexible tissue–carbon nanocoil–carbon nanotube-based humidity sensor with high performance and durability. Nanoscale, 2022, 14, 7025-7038.	5 . 6	19
4	Novel Wearable Pyrothermoelectric Hybrid Generator for Solar Energy Harvesting. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17330-17339.	8.0	12
5	Flexible and Alternately Layered Highâ€Loading Film Electrode based on 3D Carbon Nanocoils and PEDOT:PSS for Highâ€Energyâ€Density Supercapacitor. Advanced Functional Materials, 2022, 32, .	14.9	40
6	Understanding the relationship between the geometrical structure of interfacial water and operating voltage window in graphene and nitrogen-doped graphene-based supercapacitors. Carbon, 2022, 195, 341-348.	10.3	11
7	Carrier Mobility of Polycrystalline-Amorphous Carbon Nanocoils and Its Distribution in Length Direction. Materials Today Nano, 2022, , 100207.	4.6	O
8	Construction of a binder-free non-enzymatic glucose sensor based on Cu@Ni core–shell nanoparticles anchored on 3D chiral carbon nanocoils-nickel foam hierarchical scaffold. Journal of Colloid and Interface Science, 2022, 624, 320-337.	9.4	35
9	Helical Carbon Nanowires for Magnetic-Field-Controlled Swimming. ACS Applied Nano Materials, 2022, 5, 9981-9989.	5.0	3
10	Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chemical Engineering Journal, 2021, 404, 126064.	12.7	71
11	In situ construction of hierarchical core–shell Fe3O4@C nanoparticles–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon, 2021, 171, 395-408.	10.3	119
12	Supramolecular assemblies of carbon nanocoils and tetraphenylporphyrin derivatives for sensing of catechol and hydroquinone in aqueous solution. Scientific Reports, 2021, 11, 5044.	3.3	16
13	Highly Flexible, Stretchable, and Self-Powered Strain-Temperature Dual Sensor Based on Free-Standing PEDOT:PSS/Carbon Nanocoils–Poly(vinyl) Alcohol Films. ACS Sensors, 2021, 6, 1120-1128.	7.8	40
14	Structural Engineering of Hierarchical Aerogels Comprised of Multi-dimensional Gradient Carbon Nanoarchitectures for Highly Efficient Microwave Absorption. Nano-Micro Letters, 2021, 13, 144.	27.0	122
15	Carbon Nanocoil-Supported Three-Dimensional Structure of Nickel–Cobalt Nitrides as the Electrode Material for Supercapacitors. ACS Applied Energy Materials, 2021, 4, 6678-6687.	5.1	12
16	High-performance stretchable thermoelectric fibers for wearable electronics. Chemical Engineering Journal, 2021, 426, 130816.	12.7	40
17	Flexible, multi-functional sensor based on all-carbon sensing medium with low coupling for ultrahigh-performance strain, temperature and humidity sensing. Chemical Engineering Journal, 2021, 426, 130364.	12.7	30
18	Self-healing and anti-freezing graphene–hydrogel–graphene sandwich strain sensor with ultrahigh sensitivity. Journal of Materials Chemistry B, 2021, 9, 3088-3096.	5.8	36

#	Article	IF	Citations
19	All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli. Journal of Materials Chemistry C, 2021, 9, 13789-13798.	5 . 5	34
20	Carbon nanocoils decorated with a porous NiCo ₂ O ₄ nanosheet array as a highly efficient electrode for supercapacitors. Nanoscale, 2021, 13, 11943-11952.	5.6	19
21	Carbon nanocoils-nickel foam decorated with silver nanoparticles/sheets using a novel stirring assisted electrodeposition technique for non-enzymatic glucose sensor. Carbon, 2020, 157, 761-766.	10.3	32
22	Cheap, reliable, reusable, thermally and chemically stable fluorinated hexagonal boron nitride nanosheets coated Au nanoparticles substrate for surface enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 2020, 304, 127394.	7.8	21
23	A carbon nanocoil-based flexible tip for a live cell study of mechanotransduction and electro-physiological characteristics. Journal of Materials Chemistry B, 2020, 8, 1405-1410.	5.8	6
24	Three-dimensional porous reduced graphene oxide/PEDOT:PSS aerogel: Facile preparation and high performance for supercapacitor electrodes. Electrochimica Acta, 2020, 364, 137297.	5.2	36
25	Highly conductive, ultra-flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy, 2020, 78, 105361.	16.0	96
26	Strong and tough PVA/PAA hydrogel fiber with highly strain sensitivity enabled by coating MWCNTs. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106050.	7.6	36
27	In situ investigation of annealing effect on thermophysical properties of single carbon nanocoil. International Journal of Heat and Mass Transfer, 2020, 151, 119416.	4.8	15
28	Growth of Carbon Nanocoils by Porous α-Fe2O3/SnO2 Catalyst and Its Buckypaper for High Efficient Adsorption. Nano-Micro Letters, 2020, 12, 23.	27.0	49
29	Facile Fabrication of High-Performance Pen Ink-Decorated Textile Strain Sensors for Human Motion Detection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19874-19881.	8.0	74
30	Catalytic anisotropy induced by multi-particles for growth of carbon nanocoils. Carbon, 2020, 166, 101-112.	10.3	22
31	Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: A cost-effective biomass material for binder-free supercapacitors. Materials and Design, 2019, 182, 108048.	7.0	70
32	Infrared micro-detectors with high sensitivity and high response speed using VO ₂ -coated helical carbon nanocoils. Journal of Materials Chemistry C, 2019, 7, 12095-12103.	5.5	21
33	Investigation of strain sensing mechanisms on ultra-thin carbon nanotube networks with different densities. Carbon, 2019, 155, 421-431.	10.3	16
34	Sensitivity-Tunable Strain Sensors Based on Carbon Nanotube@Carbon Nanocoil Hybrid Networks. ACS Applied Materials & Diterfaces, 2019, 11, 38160-38168.	8.0	28
35	Effect of ethanol soaking on the structure and physical properties of carbon nanocoils. Diamond and Related Materials, 2019, 97, 107426.	3.9	3
36	Fabrication of flower-like TiO ₂ on Bucky paper with enhanced photocatalytic activity. International Journal of Modern Physics B, 2019, 33, 1950017.	2.0	5

#	Article	IF	Citations
37	Growth of black TiO2 nanowire/carbon fiber composites with dendritic structure for efficient visible-light-driven photocatalytic degradation of methylene blue. Journal of Materials Science, 2019, 54, 7576-7588.	3.7	18
38	Revealing the linear relationship between electrical, thermal, mechanical and structural properties of carbon nanocoils. Physical Chemistry Chemical Physics, 2018, 20, 13316-13321.	2.8	11
39	Helical gold nanotube film as stretchable micro/nanoscale strain sensor. Journal of Materials Science, 2018, 53, 2181-2192.	3.7	13
40	Highly Efficient Near-Infrared Photothermal Conversion of a Single Carbon Nanocoil Indicated by Cell Ejection. Journal of Physical Chemistry C, 2018, 122, 27696-27701.	3.1	9
41	Optically Actuated Carbon Nanocoils. Nano, 2018, 13, 1850112.	1.0	5
42	Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs. Nanoscale, 2018, 10, 11158-11164.	5.6	35
43	High performance strain sensor based on buckypaper for full-range detection of human motions. Nanoscale, 2018, 10, 14966-14975.	5.6	48
44	A flexible, ultra-sensitive strain sensor based on carbon nanocoil network fabricated by an electrophoretic method. Nanoscale, 2017, 9, 9872-9878.	5.6	46
45	Controlled preparation of Ag nanoparticles on graphene with different amount of defects for surface-enhanced Raman scattering. RSC Advances, 2017, 7, 27105-27112.	3.6	3
46	A highly sensitive and wide-range pressure sensor based on a carbon nanocoil network fabricated by an electrophoretic method. Journal of Materials Chemistry C, 2017, 5, 11892-11900.	5.5	32
47	A super stretchable and sensitive strain sensor based on a carbon nanocoil network fabricated by a simple peeling-off approach. Nanoscale, 2017, 9, 16404-16411.	5.6	48
48	Facile fabrication of polyaniline $@\hat{i}^3$ -MnOOH on a buckypaper ternary composite electrode for free-standing supercapacitors. RSC Advances, 2017, 7, 44523-44530.	3.6	15
49	Wearable strain sensor made of carbonized cotton cloth. Journal of Materials Science: Materials in Electronics, 2017, 28, 3535-3541.	2.2	30
50	Tearing-off method based on single carbon nanocoil for liquid surface tension measurement. Japanese Journal of Applied Physics, 2016, 55, 118001.	1.5	6
51	Electrical conductivity of single polycrystalline-amorphous carbon nanocoils. Carbon, 2016, 98, 285-290.	10.3	47
52	Facile Synthesis of A Unique Structure: CuOx@C Bead-Like Nanowire Array and Its Electrochemical Performance. Electrochimica Acta, 2016, 210, 111-116.	5.2	5
53	Thermal Diffusivity of a Single Carbon Nanocoil: Uncovering the Correlation with Temperature and Domain Size. ACS Nano, 2016, 10, 9710-9719.	14.6	47
54	Synthesis of a highly efficient 3D graphene–CNT–MnO ₂ –PANI nanocomposite as a binder free electrode material for supercapacitors. Physical Chemistry Chemical Physics, 2016, 18, 26854-26864.	2.8	25

#	Article	IF	CITATIONS
55	CNC–Al2O3–Ti: a new unit for micro scale strain sensing. RSC Advances, 2016, 6, 107683-107688.	3.6	10
56	Controlled preparation of Ag nanoparticle films by a modified photocatalytic method on TiO2 films with Ag seeds for surface-enhanced Raman scattering. Applied Surface Science, 2016, 363, 412-420.	6.1	13
57	Controlled synthesis of carbon nanocoils on monolayered silica spheres. Carbon, 2016, 99, 43-48.	10.3	8
58	Highly efficient synthesis of carbon nanocoils on alumina spheres. RSC Advances, 2016, 6, 30125-30129.	3.6	9
59	Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors. Journal of Materials Research, 2015, 30, 3192-3200.	2.6	28
60	Growth of a Carbon Micro―and Nanocoils Mixture using NiSO ₄ as the Catalyst Precursor. Chemical Vapor Deposition, 2015, 21, 78-83.	1.3	5
61	Controlled synthesis of carbon nanocoils with selective coil diameters and structures by optimizing the thickness of catalyst film. Carbon, 2015, 93, 361-369.	10.3	12
62	Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism. Scientific Reports, 2015, 5, 11281.	3.3	18
63	Micro-bubble generated by laser irradiation on an individual carbon nanocoil. Applied Surface Science, 2015, 345, 428-432.	6.1	6
64	Synthesis of carbon nanocoils on substrates made of plant fibers. Carbon, 2015, 89, 47-52.	10.3	21
65	Facile synthesis of CNC–MnO2 hybrid as a supercapacitor electrode. Applied Surface Science, 2015, 324, 349-354.	6.1	25
66	Electromechanical vibration of carbon nanocoils. Carbon, 2015, 81, 758-766.	10.3	25
67	Controlled synthesis of carbon nanocoils and carbon nanotubes on common paper substrates. Carbon, 2014, 76, 455-458.	10.3	13
68	Relationship between the structure of carbon nanocoils and their electrical property. Carbon, 2014, 73, 71-77.	10.3	35
69	Near-infrared response of a single carbon nanocoil. Nanoscale, 2013, 5, 1153.	5.6	29
70	Growth of multiwall carbon nanocoils using Fe catalyst films prepared by ion sputtering. Journal of Materials Research, 2013, 28, 1316-1325.	2.6	5
71	Electrically driven light emission from a single suspended carbon nanocoil. Carbon, 2012, 50, 5537-5542.	10.3	14
72	Structure changes of an individual carbon nanocoil and its field-emission enhancement by laser treatment. Diamond and Related Materials, 2012, 22, 33-36.	3.9	17

#	Article	IF	CITATIONS
73	Thermal conductivity of a single carbon nanocoil measured by field-emission induced thermal radiation. Carbon, 2012, 50, 778-783.	10.3	27
74	Carbon nanocoils manipulated by optical tweezers. , 2010, , .		2
75	Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol–gel method. Carbon, 2010, 48, 170-175.	10.3	54
76	Synthesis of Multiwalled Carbon Nanocoils Using Codeposited Thin Film of Fe–Sn as Catalyst. Japanese Journal of Applied Physics, 2008, 47, 1949-1951.	1.5	41
77	Alignment of Carbon Nanocoils in Polymer Matrix Using Dielectrophoresis. Japanese Journal of Applied Physics, 2008, 47, 1991-1993.	1.5	14
78	Effect of Morphology on Field Emission Properties of Carbon Nanocoils and Carbon Nanotubes. Japanese Journal of Applied Physics, 2005, 44, 1652-1654.	1.5	33
79	Mechanics of a Carbon Nanocoil. Nano Letters, 2003, 3, 1299-1304.	9.1	333
80	Growth mechanism of carbon nanocoils. Journal of Applied Physics, 2002, 91, 10058.	2.5	114
81	Effects of iron and indium tin oxide on the growth of carbon tubule nanocoils. Physica B: Condensed Matter, 2002, 323, 350-351.	2.7	31
82	Field Emission Properties of Carbon Tubule Nanocoils. Japanese Journal of Applied Physics, 2001, 40, L235-L237.	1.5	97
83	Synthesis of Carbon Tubule Nanocoils in High Yield Using Iron-Coated Indium Tin Oxide as Catalyst. Japanese Journal of Applied Physics, 2000, 39, L1242-L1244.	1.5	132