List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/893625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic Reduction of CO ₂ on TiO ₂ and Other Semiconductors. Angewandte Chemie - International Edition, 2013, 52, 7372-7408.	13.8	2,481
2	Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. Science, 2001, 293, 1119-1122.	12.6	2,286
3	ZnO \hat{a} €" nanostructures, defects, and devices. Materials Today, 2007, 10, 40-48.	14.2	1,582
4	Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 11760-11762.	3.1	691
5	Advances in Liquidâ€Electrolyte and Solid‣tate Dye‣ensitized Solar Cells. Advanced Materials, 2007, 19, 3187-3200.	21.0	564
6	Control of dark current in photoelectrochemical (TiO2/I––I3–) and dye-sensitized solar cells. Chemical Communications, 2005, , 4351.	4.1	561
7	Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells. Advanced Materials, 2005, 17, 813-815.	21.0	485
8	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	16.0	362
9	Nanostructured Organic and Hybrid Solar Cells. Advanced Materials, 2011, 23, 1810-1828.	21.0	300
10	Quantification of ion migration in CH ₃ NH ₃ PbI ₃ perovskite solar cells by transient capacitance measurements. Materials Horizons, 2019, 6, 1497-1503.	12.2	297
11	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	19.5	276
12	Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2006, 128, 16376-16383.	13.7	254
13	A novel blue dye for near-IR â€~dye-sensitised' solar cell applications. Chemical Communications, 2007, , 234-236.	4.1	241
14	TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films, 2006, 500, 296-301.	1.8	237
15	Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye. Applied Physics Letters, 2005, 86, 013504.	3.3	200
16	Erroneous efficiency reports harm organic solar cell research. Nature Photonics, 2014, 8, 669-672.	31.4	195
17	Parameters Influencing Charge Separation in Solid-State Dye-Sensitized Solar Cells Using Novel Hole Conductors. Advanced Functional Materials, 2006, 16, 1832-1838.	14.9	192
18	Strong Efficiency Improvements in Ultraâ€lowâ€Cost Inorganic Nanowire Solar Cells. Advanced Materials, 2010, 22, E254-8.	21.0	181

#	Article	IF	CITATIONS
19	Light intensity, temperature, and thickness dependence of the open-circuit voltage in solid-state dye-sensitized solar cells. Physical Review B, 2006, 74, .	3.2	166
20	Effect of Hydrocarbon Chain Length of Amphiphilic Ruthenium Dyes on Solid-State Dye-Sensitized Photovoltaics. Nano Letters, 2005, 5, 1315-1320.	9.1	152
21	Incompatible Length Scales in Nanostructured Cu ₂ O Solar Cells. Advanced Functional Materials, 2012, 22, 2202-2208.	14.9	142
22	Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Materials, 2014, 2, .	5.1	136
23	A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO u ₂ 0 Photovoltaics. Advanced Functional Materials, 2011, 21, 573-582.	14.9	122
24	A simple low temperature synthesis route for ZnO–MgO core–shell nanowires. Nanotechnology, 2008, 19, 465603.	2.6	111
25	Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide Perovskites under Bias. ACS Energy Letters, 2018, 3, 1279-1286.	17.4	106
26	Toward Highâ€Efficiency Solutionâ€Processed Planar Heterojunction Sb ₂ S ₃ Solar Cells. Advanced Science, 2015, 2, 1500059.	11.2	102
27	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	5.1	102
28	Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Heterojunction Photovoltaic Cells. ChemPhysChem, 2005, 6, 1253-1258.	2.1	99
29	Characterization of perovskite solar cells: Towards a reliable measurement protocol. APL Materials, 2016, 4, .	5.1	94
30	Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095.	21.0	94
31	Spray-deposited PEDOT:PSS for inverted organic solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 2371-2374.	6.2	80
32	Lowâ€Temperature Synthesis of Largeâ€Area, Freeâ€Standing Nanorod Arrays on ITO/Glass and other Conducting Substrates. Advanced Materials, 2008, 20, 4470-4475.	21.0	78
33	UV light protection through TiO2 blocking layers for inverted organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 3450-3454.	6.2	77
34	Ion-Coordinating Sensitizer in Solid-State Hybrid Solar Cells. Angewandte Chemie - International Edition, 2005, 44, 6413-6417.	13.8	76
35	Influence of anodisation voltage on the dimension of titania nanotubes. Journal of Alloys and Compounds, 2010, 503, 359-364.	5.5	76
36	Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Physical Chemistry Chemical Physics, 2016, 18, 21629-21639.	2.8	75

#	Article	IF	CITATIONS
37	Toward Fluorinated Spacers for MAPI-Derived Hybrid Perovskites: Synthesis, Characterization, and Phase Transitions of (FC ₂ H ₄ NH ₃) ₂ PbCl ₄ . Chemistry of Materials, 2016, 28, 6560-6566.	6.7	74
38	Fiberâ€Shaped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.	19.5	74
39	Nanostructured interfaces in polymer solar cells. Applied Physics Letters, 2010, 96, 263109.	3.3	66
40	Discotic materials for organic solar cells: Effects of chemical structure on assembly and performance. Solar Energy Materials and Solar Cells, 2010, 94, 560-567.	6.2	64
41	Efficient organic photovoltaics from soluble discotic liquid crystalline materials. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 263-267.	2.7	62
42	Highly absorbing solar cells—a survey of plasmonic nanostructures. Optics Express, 2012, 20, A177.	3.4	59
43	Direct Observation and Quantitative Analysis of Mobile Frenkel Defects in Metal Halide Perovskites Using Scanning Kelvin Probe Microscopy. Journal of Physical Chemistry C, 2018, 122, 12633-12639.	3.1	58
44	Pseudoâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100818.	19.5	56
45	Porous and Shapeâ€Anisotropic Single Crystals of the Semiconductor Perovskite CH ₃ NH ₃ PbI ₃ from a Singleâ€Source Precursor. Angewandte Chemie - International Edition, 2015, 54, 1341-1346.	13.8	54
46	H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy. Scientific Reports, 2016, 6, 32434.	3.3	53
47	Highâ€speed atmospheric atomic layer deposition of ultra thin amorphous TiO ₂ blocking layers at 100 °C for inverted bulk heterojunction solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 393-400.	8.1	52
48	Lithium Doping of ZnO for High Efficiency and Stability Fullerene and Non-fullerene Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 1663-1675.	5.1	52
49	Organic Thin Film Photovoltaic Devices from Discotic Materials. Molecular Crystals and Liquid Crystals, 2003, 396, 73-90.	0.9	50
50	Fast Charge-Carrier Trapping in TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2015, 119, 9159-9168.	3.1	50
51	Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42542-42551.	8.0	50
52	Perylene Sensitization of Fullerenes for Improved Performance in Organic Photovoltaics. Advanced Energy Materials, 2011, 1, 861-869.	19.5	49
53	Recent trends in template assisted 3D porous materials for electrochemical supercapacitors. Journal of Materials Chemistry A, 2021, 9, 25286-25324.	10.3	48
54	Research Update: Behind the high efficiency of hybrid perovskite solar cells. APL Materials, 2016, 4, .	5.1	47

#	Article	IF	CITATIONS
55	Role of the Metal-Oxide Work Function on Photocurrent Generation in Hybrid Solar Cells. Scientific Reports, 2018, 8, 3559.	3.3	47
56	The backing layer dependence of open circuit voltage in ZnO/polymer composite solar cells. Thin Solid Films, 2008, 516, 7218-7222.	1.8	45
57	Facile Synthesis and Photocatalysis of Size-Distributed TiO ₂ Hollow Spheres Consisting of {116} Plane-Oriented Nanocrystallites. Journal of Physical Chemistry C, 2011, 115, 6405-6409.	3.1	44
58	Characterization of Interfacial Modifiers for Hybrid Solar Cells. Journal of Physical Chemistry C, 2011, 115, 15081-15088.	3.1	42
59	Catalytically Doped Semiconductors for Chemical Gas Sensing: Aerogelâ€Like Aluminumâ€Containing Zinc Oxide Materials Prepared in the Gas Phase. Advanced Functional Materials, 2016, 26, 3424-3437.	14.9	42
60	Influence of Interfacial Area on Exciton Separation and Polaron Recombination in Nanostructured Bilayer All-Polymer Solar Cells. ACS Nano, 2014, 8, 12397-12409.	14.6	41
61	Interface-Dependent Radiative and Nonradiative Recombination in Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 10691-10698.	3.1	40
62	A brief review on stretchable, compressible, and deformable supercapacitor for smart devices. Chemical Engineering Journal, 2022, 446, 136876.	12.7	39
63	Light-trapping plasmonic nanovoid arrays. Physical Review B, 2012, 85, .	3.2	34
64	Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. Solar Rrl, 2021, 5, 2000555.	5.8	34
65	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	5.8	33
66	Completing the Picture of 2-(Aminomethylpyridinium) Lead Hybrid Perovskites: Insights into Structure, Conductivity Behavior, and Optical Properties. Chemistry of Materials, 2018, 30, 6289-6297.	6.7	32
67	Nano-Heteroarchitectures of Two-Dimensional MoS ₂ @ One-Dimensional Brookite TiO ₂ Nanorods: Prominent Electron Emitters for Displays. ACS Omega, 2017, 2, 2925-2934.	3.5	31
68	Nanoparticle shape anisotropy and photoluminescence properties: Europium containing ZnO as a Model Case. Nanoscale, 2015, 7, 16969-16982.	5.6	30
69	Benzimidazolium Lead Halide Perovskites: Effects of Anion Substitution and Dimensionality on the Bandgap. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1369-1376.	1.2	29
70	Threeâ€Dimensional Graphitized Carbon Nanovesicles for Highâ€Performance Supercapacitors Based on Ionic Liquids. ChemSusChem, 2014, 7, 777-784.	6.8	28
71	The rapid growth of 3 Âμm long titania nanotubes by anodization of titanium in a neutral electrochemical bath. Nanotechnology, 2010, 21, 055601.	2.6	27
72	Heteroepitaxial growth of ZnO branches selectively on TiO2 nanorod tips with improved light harvesting performance. Chemical Communications, 2011, 47, 8400.	4.1	27

#	Article	IF	CITATIONS
73	Controlled Growth of TiO2Nanotubes on Conducting Glass. Chemistry of Materials, 2011, 23, 155-162.	6.7	27
74	Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy–Porphyrin Dyad. ACS Applied Materials & Interfaces, 2020, 12, 1120-1131.	8.0	27
75	Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands. Nanoscale, 2013, 5, 5009.	5.6	26
76	Uniform Large-Area Free-Standing Silver Nanowire Arrays on Transparent Conducting Substrates. Journal of the Electrochemical Society, 2016, 163, D447-D452.	2.9	25
77	A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO ₂ cathode interlayers for highly efficient and extremely stable polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 1459-1469.	5.5	25
78	Structural properties of the active layer of discotic hexabenzocoronene/perylene diimide bulk hetero junction photovoltaic devices: The role of alkyl side chain length. Thin Solid Films, 2011, 520, 307-313.	1.8	24
79	Control of Recombination Pathways in TiO ₂ Nanowire Hybrid Solar Cells Using Sn ⁴⁺ Dopants. Journal of Physical Chemistry C, 2014, 118, 16672-16679.	3.1	24
80	Model for Hydrothermal Growth of Rutile Wires and the Associated Development of Defect Structures. Crystal Growth and Design, 2014, 14, 4658-4663.	3.0	23
81	Impact of Crystal Surface on Photoexcited States in Organic–Inorganic Perovskites. Advanced Functional Materials, 2017, 27, 1604995.	14.9	23
82	The influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 12088.	10.3	22
83	Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Physical Chemistry Chemical Physics, 2018, 20, 30189-30199.	2.8	22
84	Decoupling optical and electronic optimization of organic solar cells using high-performance temperature-stable TiO2/Ag/TiO2 electrodes. APL Materials, 2015, 3, .	5.1	21
85	Perovskite semiconductors for next generation optoelectronic applications. APL Materials, 2019, 7, .	5.1	21
86	Macroscopically uniform electrodeposited ZnO films on conducting glass by surface tension modification and consequent demonstration of significantly improved p–n heterojunctions. Electrochimica Acta, 2011, 56, 3758-3763.	5.2	20
87	Insights into the passivation effect of atomic layer deposited hafnium oxide for efficiency and stability enhancement in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 8051-8059.	5.5	20
88	Thiophene-Functionalized Hybrid Perovskite Microrods and their Application in Photodetector Devices for Investigating Charge Transport Through Interfaces in Particle-Based Materials. ACS Applied Materials & Interfaces, 2017, 9, 1077-1085.	8.0	19
89	Hydrothermally Grown TiO ₂ Nanorod Array Memristors with Volatile States. ACS Applied Materials & amp; Interfaces, 2020, 12, 23363-23369.	8.0	19
90	Template-free synthesis of novel, highly-ordered 3D hierarchical Nb ₃ O ₇ (OH) superstructures with semiconductive and photoactive properties. Journal of Materials Chemistry A, 2014, 2, 12005.	10.3	18

#	Article	IF	CITATIONS
91	Defeating Loss Mechanisms in 1D TiO ₂ â€Based Hybrid Solar Cells. Advanced Functional Materials, 2015, 25, 2601-2608.	14.9	18
92	Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing. Molecules, 2016, 21, 542.	3.8	18
93	Hybrid solar cells from Sb2S3 nanoparticle ink. Solar Energy Materials and Solar Cells, 2017, 172, 335-340.	6.2	18
94	Promising field electron emission performance of vertically aligned one dimensional (1D) brookite (β) TiO ₂ nanorods. RSC Advances, 2016, 6, 98722-98729.	3.6	17
95	Synergistic effects of interfacial modifiers enhance current and voltage in hybrid solar cells. APL Materials, 2013, 1, .	5.1	16
96	Tuning the Electronic Conductivity in Hydrothermally Grown Rutile TiO2 Nanowires: Effect of Heat Treatment in Different Environments. Nanomaterials, 2017, 7, 289.	4.1	16
97	Tuning the properties of F:SnO ₂ (FTO) nanocomposites with S:TiO ₂ nanoparticles – promising hazy transparent electrodes for photovoltaics applications. Journal of Materials Chemistry C, 2017, 5, 91-102.	5.5	15
98	Surface Band Bending Influences the Open-Circuit Voltage of Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 4045-4052.	5.1	15
99	Direct Patterning of Metal Chalcogenide Semiconductor Materials. Advanced Functional Materials, 2020, 30, 2002685.	14.9	15
100	Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells. Solar Energy, 2022, 233, 326-336.	6.1	15
101	Nanostructured conformal hybrid solar cells: a promising architecture towards complete charge collection and light absorption. Nanoscale Research Letters, 2013, 8, 359.	5.7	13
102	Incoherent Pathways of Charge Separation in Organic and Hybrid Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 4858-4864.	4.6	13
103	Photocurrents in crystalâ€amorphous hybrid stannous oxide/alumina binary nanofibers. Journal of the American Ceramic Society, 2019, 102, 6337-6348.	3.8	13
104	TiO ₂ Nanowire Array Memristive Devices Emulating Functionalities of Biological Synapses. Advanced Electronic Materials, 2021, 7, 2000950.	5.1	13
105	Nanostructuring discotic molecules on ITO support. Nanotechnology, 2011, 22, 055303.	2.6	12
106	Temperature-Stable and Optically Transparent Thin-Film Zinc Oxide Aerogel Electrodes As Model Systems for 3D Interpenetrating Organic–Inorganic Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 6522-6529.	8.0	12
107	Controlling the Spatial Direction of Hydrothermally Grown Rutile TiO2 Nanocrystals by the Orientation of Seed Crystals. Crystals, 2019, 9, 64.	2.2	12
108	Light emission from perovskite materials. APL Materials, 2020, 8, 070401.	5.1	12

#	Article	IF	CITATIONS
109	Influence of substrates and rutile seed layers on the assembly of hydrothermally grown rutile TiO 2 nanorod arrays. Journal of Crystal Growth, 2018, 494, 26-35.	1.5	11
110	Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand. Beilstein Journal of Nanotechnology, 2020, 11, 466-479.	2.8	11
111	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2170113.	5.8	10
112	Patterning Poly(3-Hexylthiophene) in the Sub-50-nm Region by Nanoimprint Lithography. IEEE Nanotechnology Magazine, 2011, 10, 482-488.	2.0	9
113	Imprinting localized plasmons for enhanced solar cells. Nanotechnology, 2012, 23, 385202.	2.6	9
114	Mechanism and Impact of Cation Polarization in Methylammonium Lead Iodide. Journal of Physical Chemistry C, 2018, 122, 12140-12147.	3.1	9
115	Performance enhancement of CsPbi2Br perovskite solar cells via stoichiometric control and interface engineering. Solar Energy, 2020, 211, 654-660.	6.1	9
116	Electronâ€Rich Diruthenium Complexes with Ï€â€Extended Alkenyl Ligands and Their F ₄ TCNQ Chargeâ€Transfer Salts**. Chemistry - A European Journal, 2022, , .	3.3	9
117	Strong Efficiency Improvements in Ultra-low-Cost Inorganic Nanowire Solar Cells (Adv. Mater.) Tj ETQq1 1 0.784	314 rgBT 21.0	/Overlock 10
118	Nanostructured Inorganic Solar Cells. Green, 2011, 1, .	0.4	8
119	Insights into optoelectronic properties of anti-solvent treated perovskite films. Journal of Materials Science: Materials in Electronics, 2017, 28, 15630-15636.	2.2	8
120	Improving pore-filling in TiO2 nanorods and nanotubes scaffolds for perovskite solar cells via methylamine gas healing. Solar Energy, 2018, 170, 541-548.	6.1	8
121	Tailored Interface Energetics for Efficient Charge Separation in Metal Oxide-Polymer Solar Cells. Scientific Reports, 2019, 9, 74.	3.3	8
122	Influence of metallic and dielectric nanowire arrays on the photoluminescence properties of P3HT thin films. Nanotechnology, 2012, 23, 305402.	2.6	7
123	Perspective: Hybrid solar cells: How to get the polymer to cooperate?. APL Materials, 2013, 1, .	5.1	7
124	A comparison of light-coupling into high and low index nanostructured photovoltaic thin films. APL Materials, 2015, 3, 066101.	5.1	7
125	Role of charge separation mechanism and local disorder at hybrid solar cell interfaces. Physical Review B, 2015, 91, .	3.2	7
126	Rapid synthesis of vertically aligned α-MoO ₃ nanostructures on substrates. RSC Advances, 2020, 10, 24119-24126.	3.6	7

#	Article	IF	CITATIONS
127	Photovoltaic cells based on ternary P3HT:PCBM: Ruthenium(II) complex bearing 8-(diphenylphosphino)quinoline active layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126685.	4.7	7
128	Photo-Induced Charge Separation in a Blend of Perylenediimide and Hexabenzocoronene Derivatives Studied by FP-TRMC. Synthetic Metals, 2003, 137, 1375-1376.	3.9	6
129	Large polycyclic aromatic hydrocarbons for application in donor–acceptor photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 785-789.	1.8	6
130	Controlling the density of hydrothermally grown rutile TiO2 nanorods on anatase TiO2 films. Surfaces and Interfaces, 2019, 15, 141-147.	3.0	6
131	Curing perovskites—a way towards control of crystallinity and improved stability. JPhys Energy, 2020, 2, 021001.	5.3	6
132	Performance enhancement in Sb2S3 solar cell processed with direct laser interference patterning. Solar Energy Materials and Solar Cells, 2021, 230, 111235.	6.2	6
133	Oxygen vacancies in oxidized and reduced vertically aligned α-MoO ₃ nanoblades. Materials Advances, 2022, 3, 3571-3581.	5.4	6
134	Hierarchical carbon coated vertically aligned α-MoO3 nanoblades anode materials for supercapacitor application. Journal of Alloys and Compounds, 2022, 918, 165530.	5.5	6
135	Nanoscale investigation on large crystallites in TiO2 nanotube arrays and implications for high-quality hybrid photodiodes. Journal of Materials Science, 2012, 47, 6459-6466.	3.7	5
136	Preface: Special Topic on Perovskite Solar Cells. APL Materials, 2014, 2, .	5.1	5
137	Non-equilibrium growth model of fibrous mesocrystalline rutile TiO2 nanorods. Journal of Crystal Growth, 2019, 511, 8-14.	1.5	5
138	Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes. Progress in Natural Science: Materials International, 2019, 29, 124-128.	4.4	5
139	Spatial and spectral mode mapping of a dielectric nanodot by broadband interferometric homodyne scanning near-field spectroscopy. Advanced Photonics, 2020, 2, .	11.8	4
140	On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH3NH3PbBr3) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties. Nanomaterials, 2021, 11, 3057.	4.1	3
141	Structure-induced resonant tail-state regime absorption in polymer: fullerene bulk-heterojunction solar cells. Physical Review B, 2016, 93, .	3.2	2
142	Fabrication and characterization of abrupt TiO2–SiOx core-shell nanowires by a simple heat treatment. APL Materials, 2017, 5, .	5.1	2
143	Hybrid Organic/Inorganic and Perovskite Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 187-227.	0.7	2
144	Position-controlled laser-induced creation of rutile TiO ₂ nanostructures. Nanotechnology, 2019, 30, 335302.	2.6	2

#	Article	IF	CITATIONS
145	Metallophthalocyanines in a ternary photoactive layer (P3HT:MPc:PC ₇₀ BM) for bulk heterojunction solar cells. Materials Advances, 2020, 1, 3058-3072.	5.4	2
146	Complementary switching in single Nb3O7(OH) nanowires. APL Materials, 2021, 9, 071105.	5.1	2
147	Titanium oxynitride coated graphite paper electrodes for light-weight supercapacitors. Journal of Materials Science: Materials in Electronics, 2022, 33, 9669-9678.	2.2	2
148	Impact of the glass transition on exciton dynamics in polymer thin films. Physical Review B, 2017, 96, .	3.2	1
149	Chapter 5. The Role of Nanostructured Metal Oxides in Hybrid Solar Cells. RSC Energy and Environment Series, 2016, , 141-176.	0.5	1
150	Giant polarization anisotropic optical response from anodic aluminum oxide templates embedded with plasmonic metamaterials. Optics Express, 2020, 28, 29513.	3.4	1
151	Molecular design for all-in-one self-assembled donor–acceptor organic solar cells. Solar Energy Materials and Solar Cells, 2022, 244, 111798.	6.2	1
152	Amphiphilic Dye for Solid-State Dye-Sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2004, 836, L1.4.1.	0.1	0
153	Oxide nanowire arrays for hybrid solar cells. , 2008, , .		0
154	Fast electron trapping in anodized TiO <inf>2</inf> nanotubes. , 2013, , .		0
155	Preface for Special Topic: Perovskite solar cells—A research update. APL Materials, 2016, 4, .	5.1	0
156	Controlled Morphologies by Molecular Design and Nano-Imprint Lithography. Advances in Polymer Science, 2017, , 215-242.	0.8	0
157	Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods. Beilstein Journal of Nanotechnology, 2019, 10, 412-418.	2.8	0
158	Interaction between plasmonic silver nanorod arrays and nanosecond pulsed laser. Physica B: Condensed Matter, 2021, 607, 412573.	2.7	0
159	Nanowire-based metamaterials electrodes for extremely fast charge collection. , 2018, , .		0
160	Pulsed laser annealing for metallic nanorods embedded in alumina. , 2018, , .		0
161	Chemical Engineering of Ferroelastic Twin Domains in MAPbI3 Films. , 0, , .		0