Jeffrey D Macklis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8934766/publications.pdf

Version: 2024-02-01

73 papers 10,701 citations

41 h-index

71102

91884 69 g-index

127 all docs

127 docs citations

times ranked

127

11720 citing authors

#	Article	IF	Citations
1	Neuronal subtype specification in the cerebral cortex. Nature Reviews Neuroscience, 2007, 8, 427-437.	10.2	1,444
2	Induction of neurogenesis in the neocortex of adult mice. Nature, 2000, 405, 951-955.	27.8	1,138
3	Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo. Neuron, 2005, 45, 207-221.	8.1	1,046
4	Molecular logic of neocortical projection neuron specification, development and diversity. Nature Reviews Neuroscience, 2013, 14, 755-769.	10.2	688
5	Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons. Neuron, 2005, 47, 817-831.	8.1	448
6	MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Molecular and Cellular Neurosciences, 2004, 27, 306-321.	2.2	390
7	Development, specification, and diversity of callosal projection neurons. Trends in Neurosciences, 2011, 34, 41-50.	8.6	332
8	IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nature Neuroscience, 2006, 9, 1371-1381.	14.8	299
9	<i>Ctip2</i> Controls the Differentiation of Medium Spiny Neurons and the Establishment of the Cellular Architecture of the Striatum. Journal of Neuroscience, 2008, 28, 622-632.	3.6	280
10	SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron Subtypes. Neuron, 2008, 57, 232-247.	8.1	273
11	CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature, 2017, 547, 345-349.	27.8	254
12	Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nature Neuroscience, 2016, 19, 542-553.	14.8	252
13	Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biology, 2006, 2, 175-186.	1.6	249
14	Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16357-16362.	7.1	220
15	Adult-Born and Preexisting Olfactory Granule Neurons Undergo Distinct Experience-Dependent Modifications of their Olfactory Responses (i>In Vivo (i>). Journal of Neuroscience, 2005, 25, 10729-10739.	3. 6	192
16	Novel Subtype-Specific Genes Identify Distinct Subpopulations of Callosal Projection Neurons. Journal of Neuroscience, 2009, 29, 12343-12354.	3.6	187
17	SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nature Neuroscience, 2009, 12, 1238-1247.	14.8	179
18	Molecular recordings by directed CRISPR spacer acquisition. Science, 2016, 353, aaf1175.	12.6	179

#	Article	IF	CITATIONS
19	Bhlhb5 Regulates the Postmitotic Acquisition of Area Identities in Layers II-V of the Developing Neocortex. Neuron, 2008, 60, 258-272.	8.1	165
20	Corticospinal Motor Neurons and Related Subcerebral Projection Neurons Undergo Early and Specific Neurodegeneration in hSOD1 ^{G93A} Transgenic ALS Mice. Journal of Neuroscience, 2011, 31, 4166-4177.	3.6	159
21	Deciphering amyotrophic lateral sclerosis: What phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 5-18.	1.7	142
22	Everything that Glitters Isn't Gold: A Critical Review of Postnatal Neural Precursor Analyses. Cell Stem Cell, 2007, 1, 612-627.	11.1	129
23	Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature, 2019, 565, 356-360.	27.8	125
24	Mature Astrocytes Transform into Transitional Radial Glia within Adult Mouse Neocortex That Supports Directed Migration of Transplanted Immature Neurons. Experimental Neurology, 1999, 157, 43-57.	4.1	115
25	Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3576-3581.	7.1	111
26	Large-scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice. Journal of Comparative Neurology, 2005, 482, 17-32.	1.6	96
27	Late-Stage Immature Neocortical Neurons Reconstruct Interhemispheric Connections and Form Synaptic Contacts with Increased Efficiency in Adult Mouse Cortex Undergoing Targeted Neurodegeneration. Journal of Neuroscience, 2002, 22, 4045-4056.	3.6	94
28	Transplanted Neuroblasts Differentiate Appropriately into Projection Neurons with Correct Neurotransmitter and Receptor Phenotype in Neocortex Undergoing Targeted Projection Neuron Degeneration. Journal of Neuroscience, 2000, 20, 7404-7416.	3.6	92
29	Anatomic and Molecular Development of Corticostriatal Projection Neurons in Mice. Cerebral Cortex, 2014, 24, 293-303.	2.9	80
30	Embryonic Neurons Transplanted to Regions of Targeted Photolytic Cell Death in Adult Mouse Somatosensory Cortex Re-form Specific Callosal Projections. Experimental Neurology, 1996, 139, 131-142.	4.1	79
31	MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons. Experimental Neurology, 2010, 222, 51-58.	4.1	78
32	Specific Neurotrophic Factors Support the Survival of Cortical Projection Neurons at Distinct Stages of Development. Journal of Neuroscience, 2001, 21, 8863-8872.	3.6	76
33	Corticospinal Motor Neurons Are Susceptible to Increased ER Stress and Display Profound Degeneration in the Absence of UCHL1 Function. Cerebral Cortex, 2015, 25, 4259-4272.	2.9	69
34	Ctip1 Regulates the Balance between Specification of Distinct Projection Neuron Subtypes in Deep Cortical Layers. Cell Reports, 2016, 15, 999-1012.	6.4	66
35	Ctip1 Controls Acquisition of Sensory Area Identity and Establishment of Sensory Input Fields in the Developing Neocortex. Neuron, 2016, 90, 261-277.	8.1	64
36	Lmo4 and Clim1 Progressively Delineate Cortical Projection Neuron Subtypes during Development. Cerebral Cortex, 2009, 19, i62-i69.	2.9	62

#	Article	IF	Citations
37	Transplanted Hypothalamic Neurons Restore Leptin Signaling and Ameliorate Obesity in db/db Mice. Science, 2011, 334, 1133-1137.	12.6	60
38	LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants <i>Fezf2</i> and <i>Sox11</i> . Journal of Neuroscience, 2017, 37, 194-203.	3.6	59
39	Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice. Nature Communications, 2016, 7, 10520.	12.8	58
40	SnapShot: Cortical Development. Cell, 2012, 151, 918-918.e1.	28.9	57
41	Lmo4 Establishes Rostral Motor Cortex Projection Neuron Subtype Diversity. Journal of Neuroscience, 2013, 33, 6321-6332.	3.6	56
42	Corticothalamic Projection Neuron Development beyond Subtype Specification: Fog2 and Intersectional Controls Regulate Intraclass Neuronal Diversity. Neuron, 2016, 91, 90-106.	8.1	49
43	Single-Cell Analysis of SMN Reveals Its Broader Role in Neuromuscular Disease. Cell Reports, 2017, 18, 1484-1498.	6.4	38
44	Strict in vivo specificity of the Bcl11a erythroid enhancer. Blood, 2016, 128, 2338-2342.	1.4	33
45	Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. Journal of Neuroscience, 2016, 36, 6403-6419.	3.6	33
46	Induction of Adult Neurogenesis. Annals of the New York Academy of Sciences, 2003, 991, 229-236.	3.8	30
47	Identification of Newborn Cells by BrdU Labeling and Immunocytochemistry In Vivo. Methods in Molecular Biology, 2008, 438, 335-343.	0.9	30
48	Input-dependent regulation of excitability controls dendritic maturation in somatosensory thalamocortical neurons. Nature Communications, 2017, 8, 2015.	12.8	30
49	New memories from new neurons. Nature, 2001, 410, 314-317.	27.8	28
50	Stage-specific and opposing roles of BDNF, NT-3 and bFGF in differentiation of purified callosal projection neurons toward cellular repair of complex circuitry. European Journal of Neuroscience, 2004, 19, 2421-2434.	2.6	25
51	Subtype-Specific Genes that Characterize Subpopulations of Callosal Projection Neurons in Mouse Identify Molecularly Homologous Populations in Macaque Cortex. Cerebral Cortex, 2017, 27, 1817-1830.	2.9	23
52	Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes. Neurobiology of Aging, 2015, 36, 2006.e1-2006.e9.	3.1	22
53	An evolutionarily acquired microRNA shapes development of mammalian cortical projections. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29113-29122.	7.1	21
54	Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nature Neuroscience, 2018, 21, 517-529.	14.8	20

#	Article	IF	CITATIONS
55	Molecular development and repair of corticospinal motor neuron circuitry. Experimental Neurology, 2006, 198, 581-582.	4.1	19
56	Corticospinal neuron subpopulation-specific developmental genes prospectively indicate mature segmentally specific axon projection targeting. Cell Reports, 2021, 37, 109843.	6.4	19
57	Crim1 and Kelch-like 14 exert complementary dual-directional developmental control over segmentally specific corticospinal axon projection targeting. Cell Reports, 2021, 37, 109842.	6.4	18
58	Human Adult Olfactory Bulb Neurogenesis? Novelty Is the Best Policy. Neuron, 2012, 74, 595-596.	8.1	15
59	Caveolin1 Identifies a Specific Subpopulation of Cerebral Cortex Callosal Projection Neurons (CPN) Including Dual Projecting Cortical Callosal/Frontal Projection Neurons (CPN/FPN). ENeuro, 2018, 5, ENEURO.0234-17.2017.	1.9	15
60	Established monolayer differentiation of mouse embryonic stem cells generates heterogeneous neocorticalâ€like neurons stalled at a stage equivalent to midcorticogenesis. Journal of Comparative Neurology, 2014, 522, 2691-2706.	1.6	13
61	Vitamin D Supplementation Rescues Aberrant NF-κB Pathway Activation and Partially Ameliorates Rett Syndrome Phenotypes in Mecp2 Mutant Mice. ENeuro, 2020, 7, ENEURO.0167-20.2020.	1.9	12
62	Motor cortex connections., 2020,, 167-199.		8
63	Neuronal subtype-specific growth cone and soma purification from mammalian CNS via fractionation and fluorescent sorting for subcellular analyses and spatial mapping of local transcriptomes and proteomes. Nature Protocols, 2022, 17, 222-251.	12.0	8
64	Proposed association between the hexanucleotide repeat of <i>C9orf72</i> and opposability index of the thumb. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 175-181.	1.7	6
65	Identification of radial glia-like cells in the adult mouse olfactory bulb. Experimental Neurology, 2012, 236, 283-297.	4.1	4
66	Synthetic modified Fezf2 mRNA (modRNA) with concurrent small molecule SIRT1 inhibition enhances refinement of cortical subcerebral/corticospinal neuron identity from mouse embryonic stem cells. PLoS ONE, 2021, 16, e0254113.	2.5	3
67	Established monolayer differentiation of mouse embryonic stem cells generates heterogeneous neocortical-like neurons stalled at a stage equivalent to midcorticogenesis. Journal of Comparative Neurology, 2014, 522, Spc1-Spc1.	1.6	1
68	Specification of cortical projection neurons. , 2020, , 427-459.		1
69	The repair of complex neuronal circuitry by transplanted and endogenous precursors. Neurotherapeutics, 2004, 1, 452-471.	4.4	1
70	Transplanted Neocortical Neurons Migrate to Repopulate Selectively Neuron-Deficient Regions After Photolytic Pyramidal Neuron Degeneration. Journal of Neural Transplantation & Plasticity, 1992, 3, 176-177.	0.7	0
71	Adult neurogenesis and neural precursors, progenitors, and stem cells in the adult CNS., 0,, 303-325.		0
72	Adult neurogenesis and neural precursors, progenitors, and stem cells in the adult central nervous system., 0,, 283-300.		0

#	Article	IF	CITATIONS
73	Unfolding the Folding Problem of the Cerebral Cortex: Movin' and Groovin'. Developmental Cell, 2017, 41, 332-334.	7.0	0