
Miina E Ollikainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8934168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Association Between Epigenetic Clocks and Physical Functioning in Older Women: A 3-Year Follow-up. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1569-1576.	3.6	11
2	Modeling dependency structures in 450k DNA methylation data. Bioinformatics, 2022, 38, 885-891.	4.1	2
3	Do Epigenetic Clocks Provide Explanations for Sex Differences in Life Span? A Cross-Sectional Twin Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1898-1906.	3.6	15
4	Multi-Omics Integration in a Twin Cohort and Predictive Modeling of Blood Pressure Values. OMICS A Journal of Integrative Biology, 2022, 26, 130-141.	2.0	6
5	The potential of DNA methylation as a biomarker for obesity and smoking. Journal of Internal Medicine, 2022, 292, 390-408.	6.0	19
6	BMI is positively associated with accelerated epigenetic aging in twin pairs discordant for body mass index. Journal of Internal Medicine, 2022, 292, 627-640.	6.0	15
7	Associations of Alcohol Consumption With Epigenomeâ€Wide DNA Methylation and Epigenetic Age Acceleration: Individualâ€Level and Coâ€ŧwin Comparison Analyses. Alcoholism: Clinical and Experimental Research, 2021, 45, 318-328.	2.4	18
8	DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan. Molecular Psychiatry, 2021, 26, 2148-2162.	7.9	21
9	Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. Clinical Epigenetics, 2021, 13, 110.	4.1	15
10	Genetic meta-analysis of twin birth weight shows high genetic correlation with singleton birth weight. Human Molecular Genetics, 2021, 30, 1894-1905.	2.9	6
11	Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biology, 2021, 22, 194.	8.8	90
12	Does the epigenetic clock GrimAge predict mortality independent of genetic influences: an 18Âyear follow-up study in older female twin pairs. Clinical Epigenetics, 2021, 13, 128.	4.1	17
13	Identical twins carry a persistent epigenetic signature of early genome programming. Nature Communications, 2021, 12, 5618.	12.8	26
14	Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nature Genetics, 2021, 53, 1311-1321.	21.4	218
15	Leisure-Time and Occupational Physical Activity Associates Differently with Epigenetic Aging. Medicine and Science in Sports and Exercise, 2021, 53, 487-495.	0.4	28
16	Lymphoma-Associated Biomarkers Are Increased in Current Smokers in Twin Pairs Discordant for Smoking. Cancers, 2021, 13, 5395.	3.7	2
17	The mitochondrial protein Opa1 promotes adipocyte browning that is dependent on urea cycle metabolites. Nature Metabolism, 2021, 3, 1633-1647.	11.9	42
18	An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs. Royal Society Open Science, 2020, 7, 200872.	2.4	4

MIINA E OLLIKAINEN

#	Article	IF	CITATIONS
19	Identification, Heritability, and Relation With Gene Expression of Novel DNA Methylation Loci for Blood Pressure. Hypertension, 2020, 76, 195-205.	2.7	33
20	Plasma metabolites reveal distinct profiles associating with different metabolic risk factors in monozygotic twin pairs. International Journal of Obesity, 2019, 43, 487-502.	3.4	13
21	Epigenome-wide association study of lung function level and its change. European Respiratory Journal, 2019, 54, 1900457.	6.7	49
22	The Older Finnish Twin Cohort — 45 Years of Follow-up. Twin Research and Human Genetics, 2019, 22, 240-254.	0.6	68
23	Peripheral blood DNA methylation differences in twin pairs discordant for Alzheimer's disease. Clinical Epigenetics, 2019, 11, 130.	4.1	29
24	EpiSmokEr: a robust classifier to determine smoking status from DNA methylation data. Epigenomics, 2019, 11, 1469-1486.	2.1	85
25	Leisure-time physical activity and DNA methylation age—a twin study. Clinical Epigenetics, 2019, 11, 12.	4.1	34
26	Making Sense of the Epigenome Using Data Integration Approaches. Frontiers in Pharmacology, 2019, 10, 126.	3.5	58
27	Accuracy of self-reported anthropometric measures — Findings from the Finnish Twin Study. Obesity Research and Clinical Practice, 2019, 13, 522-528.	1.8	22
28	Epigenome-wide association study of serum cotinine in current smokers reveals novel genetically driven loci. Clinical Epigenetics, 2019, 11, 1.	4.1	116
29	Genetic and Environmental Effects on Gene Expression Signatures of Blood Pressure. Hypertension, 2018, 71, 457-464.	2.7	16
30	High-throughput DNA methylation analysis in anorexia nervosa confirms <i>TNXB</i> hypermethylation. World Journal of Biological Psychiatry, 2018, 19, 187-199.	2.6	28
31	Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and long-term weight loss. International Journal of Obesity, 2018, 42, 412-423.	3.4	32
32	Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clinical Epigenetics, 2018, 10, 126.	4.1	110
33	Biological clocks and physical functioning in monozygotic female twins. BMC Geriatrics, 2018, 18, 83.	2.7	22
34	Abstract 3228: Tobacco smoking and circulating immune-related biomarkers in monozygotic twins. , 2018, , .		0
35	Gene expression profile of subcutaneous adipose tissue in BMI-discordant monozygotic twin pairs unravels molecular and clinical changes associated with sub-types of obesity. International Journal of Obesity, 2017, 41, 1176-1184.	3.4	31
36	Neuregulin signaling pathway in smoking behavior. Translational Psychiatry, 2017, 7, e1212-e1212.	4.8	8

MIINA E OLLIKAINEN

#	Article	IF	CITATIONS
37	An epigenome-wide association study meta-analysis of educational attainment. Molecular Psychiatry, 2017, 22, 1680-1690.	7.9	70
38	Mendelian randomization in (epi)genetic epidemiology: an effective tool to be handled with care. Genome Biology, 2016, 17, 156.	8.8	29
39	Biotin-dependent functions in adiposity: a study of monozygotic twin pairs. International Journal of Obesity, 2016, 40, 788-795.	3.4	16
40	DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs. International Journal of Obesity, 2016, 40, 654-661.	3.4	59
41	Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass. Twin Research and Human Genetics, 2015, 18, 647-661.	0.6	16
42	A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism. PLoS Genetics, 2015, 11, e1005498.	3.5	107
43	Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clinical Epigenetics, 2015, 7, 39.	4.1	71
44	Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes, 2015, 64, 3135-3145.	0.6	263
45	Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biology, 2013, 14, R42.	9.6	172
46	Association of maternal and nutrient supply line factors with DNA methylation at the imprintedIGF2/H19locus in multiple tissues of newborn twins. Epigenetics, 2013, 8, 1069-1079.	2.7	40
47	The Peri/Postnatal Epigenetic Twins Study (PETS). Twin Research and Human Genetics, 2013, 16, 13-20.	0.6	50
48	Cohort Profile: The Peri/post-natal Epigenetic Twins Study. International Journal of Epidemiology, 2012, 41, 55-61.	1.9	48
49	Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Research, 2012, 22, 1395-1406.	5.5	246
50	Expression discordance of monozygotic twins at birth: Effect of intrauterine environment and a possible mechanism for fetal programming. Epigenetics, 2011, 6, 579-592.	2.7	70
51	Epigenetic discordance at imprinting control regions in twins. Epigenomics, 2011, 3, 295-306.	2.1	37
52	DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Human Molecular Genetics, 2010, 19, 4176-4188.	2.9	296
53	Copy number alterations of the polycomb gene BMI1 in gliomas. Acta Neuropathologica, 2008, 116, 97-102.	7.7	44
54	Somatic <i>FGF9</i> mutations in colorectal and endometrial carcinomas associated with membranous î² -catenin. Human Mutation, 2008, 29, 390-397.	2.5	31

MIINA E OLLIKAINEN

#	Article	IF	CITATIONS
55	Epigenetic Signatures of Familial Cancer Are Characteristic of Tumor Type and Family Category. Cancer Research, 2008, 68, 4597-4605.	0.9	79
56	Patterns ofPIK3CA alterations in familial colorectal and endometrial carcinoma. International Journal of Cancer, 2007, 121, 915-920.	5.1	61
57	Mechanisms of inactivation of MLH1 in hereditary nonpolyposis colorectal carcinoma: a novel approach. Oncogene, 2007, 26, 4541-4549.	5.9	56
58	Comprehensive characterization of HNPCC-related colorectal cancers reveals striking molecular features in families with no germline mismatch repair gene mutations. Oncogene, 2005, 24, 1542-1551.	5.9	79
59	APC and β-catenin protein expression patterns in HNPCC-related endometrial and colorectal cancers. Familial Cancer, 2005, 4, 187-190.	1.9	19
60	Molecular Analysis of Familial Endometrial Carcinoma: A Manifestation of Hereditary Nonpolyposis Colorectal Cancer or a Separate Syndrome?. Journal of Clinical Oncology, 2005, 23, 4609-4616.	1.6	125
61	Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Human Molecular Genetics, 2004, 13, 2303-2311.	2.9	127
62	BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. Journal of Medical Genetics, 2004, 41, 664-668.	3.2	305
63	Mutations in the β-tropomyosin (TPM2) gene – a rare cause of nemaline myopathy. Neuromuscular Disorders, 2002, 12, 151-158.	0.6	210
64	Frequency-related effects in the optimization of coils for the magnetic stimulation of the nervous system. IEEE Transactions on Biomedical Engineering, 2002, 49, 463-471.	4.2	16