Geoffrey M Wahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8932483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin D Receptor-Mediated Stromal Reprogramming Suppresses Pancreatitis and Enhances Pancreatic Cancer Therapy. Cell, 2014, 159, 80-93.	28.9	871
2	Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368, 85-89.	12.6	692
3	Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature, 2017, 543, 122-125.	27.8	530
4	Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature, 2019, 569, 131-135.	27.8	287
5	Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. Cell Reports, 2018, 24, 1653-1666.e7.	6.4	125
6	Epigenetic and Transcriptomic Profiling of Mammary Gland Development and Tumor Models Disclose Regulators of Cell State Plasticity. Cancer Cell, 2018, 34, 466-482.e6.	16.8	111
7	Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells. Cell Reports, 2015, 12, 2035-2048.	6.4	107
8	A Versatile Platform to Analyze Low-Affinity and Transient Protein-Protein Interactions in Living Cells in Real Time. Cell Reports, 2014, 9, 1946-1958.	6.4	69
9	Selective capture of acentric fragments by micronuclei provides a rapid method for purifying extrachromosomally amplified DNA. Nature Genetics, 1996, 12, 65-71.	21.4	68
10	Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships. Cell Reports, 2019, 29, 495-510.e6.	6.4	66
11	Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nature Communications, 2016, 7, 10743.	12.8	60
12	CRIPTO/GRP78 Signaling Maintains Fetal and Adult Mammary Stem Cells ExÂVivo. Stem Cell Reports, 2014, 2, 427-439.	4.8	57
13	Tuft Cells Inhibit Pancreatic Tumorigenesis in Mice by Producing Prostaglandin D2. Gastroenterology, 2020, 159, 1866-1881.e8.	1.3	45
14	DIRAS3 (ARHI) Blocks RAS/MAPK Signaling by Binding Directly to RAS and Disrupting RAS Clusters. Cell Reports, 2019, 29, 3448-3459.e6.	6.4	44
15	Single-Cell Transcriptomics Reveals a Conserved Metaplasia Program in Pancreatic Injury. Gastroenterology, 2022, 162, 604-620.e20.	1.3	43
16	Tuft Cell Formation Reflects Epithelial Plasticity in Pancreatic Injury: Implications for Modeling Human Pancreatitis. Frontiers in Physiology, 2020, 11, 88.	2.8	40
17	Stem Cell Determinant SOX9 Promotes Lineage Plasticity and Progression in Basal-like Breast Cancer. Cell Reports, 2020, 31, 107742.	6.4	34
18	Reprogramming pancreatic stellate cells via p53 activation: A putative target for pancreatic cancer therapy. PLoS ONE, 2017, 12, e0189051.	2.5	31

2

GEOFFREY M WAHL

#	Article	IF	CITATIONS
19	Receptor Tyrosine Kinase-like Orphan Receptor 2 (Ror2) Expression Creates a Poised State of Wnt Signaling in Renal Cancer. Journal of Biological Chemistry, 2013, 288, 26301-26310.	3.4	29
20	p53-mediated accumulation of hypophosphorylated pRb after the G1 restriction point fails to halt cell cycle progression. Oncogene, 1997, 15, 337-345.	5.9	28
21	Lgr5 is a marker for fetal mammary stem cells, but is not essential for stem cell activity or tumorigenesis. Npj Breast Cancer, 2017, 3, 16.	5.2	27
22	Analysis of RAS protein interactions in living cells reveals a mechanism for pan-RAS depletion by membrane-targeted RAS binders. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12121-12130.	7.1	19
23	The Trp53 delta proline (Trp53ΔP) mouse exhibits increased genome instability and susceptibility to radiation-induced, but not spontaneous, tumor development. Molecular Carcinogenesis, 2016, 55, 1387-1396.	2.7	5
24	Mouse Engineering. Science, 1997, 277, 1021-1025.	12.6	5
25	What a Difference a Phosphate Makes: Life or Death Decided by a Single Amino Acid in MDM2. Cancer Cell, 2012, 21, 595-596.	16.8	3
26	A Stapled p53 Helix Targets HDMX to Overcome Nutlin-3 Resistance and Reactivate the p53 Tumor Suppressor Pathway in Cancer. Blood, 2008, 112, 2645-2645.	1.4	0
27	Single-Cell Transcriptomic and Epigenetic Analyses of Mouse Mammary Development Starting with the Embryo. Methods in Molecular Biology, 2022, 2471, 49-82.	0.9	0