
En-Duo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8931932/publications.pdf Version: 2024-02-01

EN-DUO WANC

#	Article	IF	CITATIONS
1	A dual role of human tRNA methyltransferase hTrmt13 in regulating translation and transcription. EMBO Journal, 2022, 41, e108544.	7.8	6
2	Commonality and diversity in tRNA substrate recognition in t6A biogenesis by eukaryotic KEOPSs. Nucleic Acids Research, 2022, 50, 2223-2239.	14.5	14
3	Molecular basis for human mitochondrial tRNA m3C modification by alternatively spliced METTL8. Nucleic Acids Research, 2022, 50, 4012-4028.	14.5	18
4	Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease. Science China Life Sciences, 2021, 64, 1645-1660.	4.9	7
5	The human tRNA taurine modification enzyme GTPBP3 is an active GTPase linked to mitochondrial diseases. Nucleic Acids Research, 2021, 49, 2816-2834.	14.5	18
6	ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nature Cell Biology, 2021, 23, 684-691.	10.3	41
7	Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cellular and Molecular Life Sciences, 2021, 78, 7087-7105.	5.4	15
8	Position 34 of tRNA is a discriminative element for m5C38 modification by human DNMT2. Nucleic Acids Research, 2021, 49, 13045-13061.	14.5	17
9	Intellectual disabilityâ€associated gene <i>ftsj1</i> is responsible for 2â€2â€Oâ€methylation of specific tRNAs. EMBO Reports, 2020, 21, e50095.	4.5	34
10	Nitrosative stress inhibits aminoacylation and editing activities of mitochondrial threonyl-tRNA synthetase by S-nitrosation. Nucleic Acids Research, 2020, 48, 6799-6810.	14.5	11
11	Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNALys. Science China Life Sciences, 2020, 63, 1227-1239.	4.9	18
12	Molecular basis of the multifaceted functions of human leucyl-tRNA synthetase in protein synthesis and beyond. Nucleic Acids Research, 2020, 48, 4946-4959.	14.5	11
13	Molecular basis for t6A modification in human mitochondria. Nucleic Acids Research, 2020, 48, 3181-3194.	14.5	24
14	Instability of the mitochondrial alanyl-tRNA synthetase underlies fatal infantile-onset cardiomyopathy. Human Molecular Genetics, 2019, 28, 258-268.	2.9	19
15	LeuRS can leucylate type I and type II tRNALeus in Streptomyces coelicolor. Nucleic Acids Research, 2019, 47, 6369-6385.	14.5	1
16	Newly acquired N-terminal extension targets threonyl-tRNA synthetase-like protein into the multiple tRNA synthetase complex. Nucleic Acids Research, 2019, 47, 8662-8674.	14.5	16
17	Archaeal NSUN6 catalyzes m5C72 modification on a wide-range of specific tRNAs. Nucleic Acids Research, 2019, 47, 2041-2055.	14.5	31
18	The G3-U70-independent tRNA recognition by human mitochondrial alanyl-tRNA synthetase. Nucleic Acids Research, 2019, 47, 3072-3085.	14.5	25

EN-DUO WANG

#	Article	IF	CITATIONS
19	Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNAArg: Pivotal Role of the D-loop. Journal of Molecular Biology, 2018, 430, 1590-1606.	4.2	12
20	Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria. Nucleic Acids Research, 2018, 46, 849-860.	14.5	30
21	A threonyl-tRNA synthetase-like protein has tRNA aminoacylation and editing activities. Nucleic Acids Research, 2018, 46, 3643-3656.	14.5	27
22	Sensing and Transmitting Intracellular Amino Acid Signals through Reversible Lysine Aminoacylations. Cell Metabolism, 2018, 27, 151-166.e6.	16.2	97
23	A natural non-Watson–Crick base pair in human mitochondrial tRNAThr causes structural and functional susceptibility to local mutations. Nucleic Acids Research, 2018, 46, 4662-4676.	14.5	19
24	Acetylation of lysine ϵ-amino groups regulates aminoacyl-tRNA synthetase activity in Escherichia coli. Journal of Biological Chemistry, 2017, 292, 10709-10722.	3.4	16
25	Self-protective responses to norvaline-induced stress in a leucyl-tRNA synthetase editing-deficient yeast strain. Nucleic Acids Research, 2017, 45, 7367-7381.	14.5	14
26	Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Research, 2017, 45, 6684-6697.	14.5	79
27	Mutations in <i>KARS</i> cause early-onset hearing loss and leukoencephalopathy: Potential pathogenic mechanism. Human Mutation, 2017, 38, 1740-1750.	2.5	25
28	Translational Quality Control by Bacterial Threonyl-tRNA Synthetases. Journal of Biological Chemistry, 2016, 291, 21208-21221.	3.4	16
29	Cryptosporidium and Toxoplasma Parasites Are Inhibited by a Benzoxaborole Targeting Leucyl-tRNA Synthetase. Antimicrobial Agents and Chemotherapy, 2016, 60, 5817-5827.	3.2	55
30	Sequence-specific and Shape-selective RNA Recognition by the Human RNA 5-Methylcytosine Methyltransferase NSun6. Journal of Biological Chemistry, 2016, 291, 24293-24303.	3.4	30
31	A Human Disease-causing Point Mutation in Mitochondrial Threonyl-tRNA Synthetase Induces Both Structural and Functional Defects. Journal of Biological Chemistry, 2016, 291, 6507-6520.	3.4	40
32	C-terminal Domain of Leucyl-tRNA Synthetase from Pathogenic Candida albicans Recognizes both tRNASer and tRNALeu. Journal of Biological Chemistry, 2016, 291, 3613-3625.	3.4	6
33	Degenerate Connective Polypeptide 1 (CP1) Domain from Human Mitochondrial Leucyl-tRNA Synthetase. Journal of Biological Chemistry, 2015, 290, 24391-24402.	3.4	13
34	Identification of Lethal Mutations in Yeast Threonyl-tRNA Synthetase Revealing Critical Residues in Its Human Homolog. Journal of Biological Chemistry, 2015, 290, 1664-1678.	3.4	10
35	tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily. Nucleic Acids Research, 2015, 43, 7489-7503.	14.5	20
36	Identification of determinants for tRNA substrate recognition by <i>Escherichia coli</i> C/U34 2′-O-methyltransferase. RNA Biology, 2015, 12, 900-911.	3.1	30

EN-DUO WANG

#	Article	IF	CITATIONS
37	Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module. Journal of Biological Chemistry, 2015, 290, 12256-12267.	3.4	7
38	Calpain Cleaves Most Components in the Multiple Aminoacyl-tRNA Synthetase Complex and Affects Their Functions. Journal of Biological Chemistry, 2015, 290, 26314-26327.	3.4	10
39	A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity. Rna, 2014, 20, 1440-1450.	3.5	12
40	A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading. Nucleic Acids Research, 2014, 42, 13873-13886.	14.5	21
41	Aminoacylation and translational quality control strategy employed by leucyl-tRNA synthetase from a human pathogen with genetic code ambiguity. Nucleic Acids Research, 2013, 41, 9825-9838.	14.5	21
42	The tRNA recognition mechanism of the minimalist SPOUT methyltransferase, TrmL. Nucleic Acids Research, 2013, 41, 7828-7842.	14.5	40
43	Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote. Nucleic Acids Research, 2013, 41, 302-314.	14.5	31
44	The Yin and Yang of tRNA: proper binding of acceptor end determines the catalytic balance of editing and aminoacylation. Nucleic Acids Research, 2013, 41, 5513-5523.	14.5	7
45	In vivo identification of essential nucleotides in tRNA Leu to its functions by using a constructed yeast tRNA Leu knockout strain. Nucleic Acids Research, 2012, 40, 10463-10477.	14.5	17
46	Heme regulates protein homeostasis at transcription, protein translation, and degradation levels. Frontiers in Biology, 2010, 5, 516-523.	0.7	3
47	The CP2 Domain of Leucyl-tRNA Synthetase Is Crucial for Amino Acid Activation and Post-transfer Editing. Journal of Biological Chemistry, 2008, 283, 36608-36616.	3.4	40
48	Two Forms of Human Cytoplasmic Arginyl-tRNA Synthetase Produced from Two Translation Initiations by a Single mRNA. Biochemistry, 2006, 45, 1338-1344.	2.5	30
49	The processing of human mitochondrial leucyl-tRNA synthetase in the insect cells. FEBS Letters, 2003, 534, 139-142.	2.8	11
50	Human mitochondrial leucyl-tRNA synthetase with high activity produced from Escherichia coli. Protein Expression and Purification, 2003, 30, 112-116.	1.3	17
51	Expression of gene encoding GL-7ACA acylase in Escherichia coli. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2002, 34, 526-31.	0.1	2
52	Effect of Alanine-293 Replacement on the Activity, ATP Binding, and Editing ofEscherichia coliLeucyl-tRNA Synthetaseâ€. Biochemistry, 2001, 40, 1144-1149.	2.5	18
53	Title is missing!. Biotechnology Letters, 2001, 23, 1781-1787.	2.2	8
54	CP1 Domain inEscherichia coliLeucyl-tRNA Synthetase Is Crucial for Its Editing Functionâ€. Biochemistry, 2000, 39, 6726-6731.	2.5	119

EN-DUO WANG

#	Article	IF	CITATIONS
55	Biosynthesis and characterization of 4-fluorotryptophan-labeled Escherichia coli arginyl-tRNA synthetase. The Protein Journal, 1999, 18, 187-192.	1.1	11
56	Discrimination of tRNALeu Isoacceptors by the Insertion Mutant of Escherichia coli Leucyl-tRNA Synthetase. Biochemistry, 1999, 38, 9084-9088.	2.5	13
57	The Peptide Bond between E292â^'A293 ofEscherichia coliLeucyl-tRNA Synthetase Is Essential for Its Activityâ€. Biochemistry, 1999, 38, 13063-13069.	2.5	20
58	Crystallization and preliminary Xâ€ray diffraction analysis of arginylâ€ŧRNA synthetase from <i>Escherichia coli</i> . Protein Science, 1997, 6, 2636-2638.	7.6	4