Dong-Zhi Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8931110/publications.pdf

Version: 2024-02-01

235 papers 4,171 citations

32 h-index 223800 46 g-index

245 all docs

245 docs citations

times ranked

245

4059 citing authors

#	Article	IF	CITATIONS
1	CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum. New Biotechnology, 2022, 66, 61-69.	4.4	8
2	Design and engineering of wholeâ€cell biocatalyst for efficient synthesis of (⟨i⟩R⟨/i⟩)â€citronellal. Microbial Biotechnology, 2022, 15, 1486-1498.	4.2	10
3	In vitro-in silico screening strategy and mechanism of angiotensin I-converting enzyme inhibitory peptides from α-lactalbumin. LWT - Food Science and Technology, 2022, 156, 112984.	5.2	13
4	Improving the biotransformation efficiency of soybean phytosterols in Mycolicibacterium neoaurum by the combined deletion of fbpC3 and embC in cell envelope synthesis. Synthetic and Systems Biotechnology, 2022, 7, 453-459.	3.7	9
5	The effects of angiotensin I-converting enzyme inhibitory peptide VGINYW and the hydrolysate of α-lactalbumin on blood pressure, oxidative stress and gut microbiota of spontaneously hypertensive rats. Food and Function, 2022, 13, 2743-2755.	4.6	16
6	Efficient Biocatalytic Synthesis of $(\langle i\rangle R\langle i\rangle)$ -2-Chloro-1-(3,4-difluorophenyl)ethanol by the Short-Chain Dehydrogenase $\langle i\rangle Pp\langle i\rangle KR8$ from $\langle i\rangle Paraburkholderia phymatum\langle i\rangle STM815$. Organic Process Research and Development, 2022, 26, 278-287.	2.7	5
7	SAC-TRAIL, a novel anticancer fusion protein: expression, purification, and functional characterization. Applied Microbiology and Biotechnology, 2022, 106, 1511.	3.6	1
8	De novo design of a transcription factor for a progesterone biosensor. Biosensors and Bioelectronics, 2022, 203, 113897.	10.1	11
9	The identification and application of a robust i‰-transaminase with high tolerance towards substrates and isopropylamine from a directed soil metagenome. Catalysis Science and Technology, 2022, 12, 2162-2175.	4.1	6
10	Transformation of phytosterols into pregnatetraenedione by a combined microbial and chemical process. Green Chemistry, 2022, 24, 3759-3771.	9.0	8
11	Production of sesquiterpene patchoulol in mitochondrion-engineered Saccharomyces cerevisiae. Biotechnology Letters, 2022, 44, 571-580.	2.2	9
12	Overexpression of mGDH in Gluconobacter oxydans to improve d-xylonic acid production from corn stover hydrolysate. Microbial Cell Factories, 2022, 21, 35.	4.0	7
13	One-pot biosynthesis of $7\hat{1}^2$ -hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered mycolicibacterium neoaurum. Microbial Cell Factories, 2022, 21, 59.	4.0	8
14	A Self-Sustained System Spanning the Primary and Secondary Metabolism Stages to Boost the Productivity of <i>Streptomyces</i> . ACS Synthetic Biology, 2022, 11, 353-365.	3.8	4
15	Engineering <i>Saccharomyces cerevisiae </i> for Hyperproduction of \hat{l}^2 -Amyrin by Mitigating the Inhibition Effect of Squalene on \hat{l}^2 -Amyrin Synthase. Journal of Agricultural and Food Chemistry, 2022, 70, 229-237.	5.2	20
16	Rational hinge engineering of carboxylic acid reductase from <i>Mycobacterium smegmatis</i> enhances its catalytic efficiency in biocatalysis. Biotechnology Journal, 2022, 17, e2100441.	3.5	8
17	Synergistic Regulation of Metabolism by Ca ²⁺ /Reactive Oxygen Species in <i>Penicillium brevicompactum</i> Improves Production of Mycophenolic Acid and Investigation of the Ca ²⁺ Channel. ACS Synthetic Biology, 2022, 11, 273-285.	3.8	7
18	Efficient Synthesis of (<i>S</i>)-1-Boc-3-aminopiperidine in a Continuous Flow System Using li‰-Transaminase-Immobilized Amino-Ethylenediamine-Modified Epoxide Supports. Organic Process Research and Development, 2022, 26, 1351-1359.	2.7	5

#	Article	IF	CITATIONS
19	Identification of a novel ene reductase from <i>Pichia angusta</i> with potential application in (<i>R</i>)-levodione production. RSC Advances, 2022, 12, 13924-13931.	3.6	4
20	Hypolipidemic effects of the fermented soymilk with a novel <i>Lactiplantibacillus plantarum</i> strain X7021 on mice via modulating lipid metabolism and gut microbiota. International Journal of Food Science and Technology, 2022, 57, 4555-4565.	2.7	5
21	CRISPR-Cas Assisted Shotgun Mutagenesis Method for Evolutionary Genome Engineering. ACS Synthetic Biology, 2022, 11, 1958-1970.	3.8	3
22	Photocontrol of Itaconic Acid Synthesis in <i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 2080-2088.	3.8	11
23	High-level expression of a \hat{l}^2 -mannanase (manB) in Pichia pastoris GS115 for mannose production with Penicillium brevicompactum fermentation pretreatment of soybean meal. Bioprocess and Biosystems Engineering, 2021, 44, 549-561.	3.4	5
24	Significantly enhancing the stereoselectivity of a regioselective nitrilase for the production of $(xi)S-3-cyano-5-methylhexanoic acid using an MM/PBSA method. Chemical Communications, 2021, 57, 931-934.$	4.1	9
25	High-Level Production of Sesquiterpene Patchoulol in <i>Saccharomyces cerevisiae</i> Biology, 2021, 10, 158-172.	3.8	29
26	The Inhibitory Effect of Cyclodextrin on Oxygen Bioavailability Is a Key Factor for the Metabolic Flux Redistribution Toward Steroid Alcohols in Phytosterol Resting Cells Bioconversion. Applied Biochemistry and Biotechnology, 2021, 193, 2443-2454.	2.9	2
27	cAMP activates calcium signalling via phospholipase C to regulate cellulase production in the filamentous fungus Trichoderma reesei. Biotechnology for Biofuels, 2021, 14, 62.	6.2	16
28	Switching the secondary and natural activity of Nitrilase from Acidovorax facilis 72 W for the efficient production of 2-picolinamide. Biotechnology Letters, 2021, 43, 1617-1624.	2.2	4
29	In Silico Rational Design and Protein Engineering of Disulfide Bridges of an αâ€Amylase from Geobacillus sp. to Improve Thermostability. Starch/Staerke, 2021, 73, 2000274.	2.1	4
30	Identification and Rational Engineering of a High Substrateâ€Tolerant Leucine Dehydrogenase Effective for the Synthesis of Lâ€ <i>tert</i> àâ€Leucine. ChemCatChem, 2021, 13, 3340-3349.	3.7	11
31	<i>Trichoderma reesei</i> ACE4, a Novel Transcriptional Activator Involved in the Regulation of Cellulase Genes during Growth on Cellulose. Applied and Environmental Microbiology, 2021, 87, e0059321.	3.1	20
32	Modification of an engineered Escherichia coli by a combinatorial strategy to improve 3,4-dihydroxybutyric acid production. Biotechnology Letters, 2021, 43, 2035-2043.	2.2	6
33	Online bioinformatics teaching practice: Comparison of popular docking programs using <scp>SARSâ€CoV</scp> â€2 spike <scp>RBD–ACE2</scp> complex as a benchmark. Biochemistry and Molecular Biology Education, 2021, 49, 833-840.	1.2	4
34	Effect of flavorzymeâ€modified soy protein on the functional properties, texture and microstructure of Mozzarella cheese analogue. Journal of Food Processing and Preservation, 2021, 45, e15963.	2.0	3
35	The expression, purification, and functional evaluation of the novel tumor suppressor fusion protein IL-24-CN. Applied Microbiology and Biotechnology, 2021, 105, 7889-7898.	3.6	2
36	Engineering the large pocket of an $(\langle i\rangle S\langle i\rangle)$ -selective transaminase for asymmetric synthesis of $(\langle i\rangle S\langle i\rangle)$ -1-amino-1-phenylpropane. Catalysis Science and Technology, 2021, 11, 2461-2470.	4.1	7

#	Article	IF	CITATIONS
37	Identification and <i>in situ</i> removal of an inhibitory intermediate to develop an efficient phytosterol bioconversion process using a cyclodextrin-resting cell system. RSC Advances, 2021, 11, 24787-24793.	3.6	7
38	Rational engineering of <i>Acinetobacter tandoii</i> glutamate dehydrogenase for asymmetric synthesis of <scp>$$synthesis of <scp>$$$$</scp></scp>	4.1	9
39	The novel repressor Rce2 competes with Ace3 to regulate cellulase gene expression in the filamentous fungus <i>Trichoderma reesei</i> . Molecular Microbiology, 2021, 116, 1298-1314.	2.5	7
40	Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction. Metabolic Engineering, 2021, 68, 232-245.	7.0	51
41	The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metabolic Engineering, 2020, 57, 151-161.	7.0	141
42	Efficient asymmetric synthesis of chiral alcohols using high 2-propanol tolerance alcohol dehydrogenase <i>Sm</i> ADH2 <i>via</i> an environmentally friendly TBCR system. Catalysis Science and Technology, 2020, 10, 70-78.	4.1	19
43	Nitrate Metabolism Decreases the Steroidal Alcohol Byproduct Compared with Ammonium in Biotransformation of Phytosterol to Androstenedione by Mycobacterium neoaurum. Applied Biochemistry and Biotechnology, 2020, 190, 1553-1560.	2.9	6
44	Immediate, multiplexed and sequential genome engineering facilitated by CRISPR/Cas9 in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 83-96.	3.0	14
45	Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum. Journal of Biotechnology, 2020, 323, 341-346.	3.8	19
46	Structure-guided evolution of carbonyl reductase for efficient biosynthesis of ethyl (<i>R</i>)-2-hydroxy-4-phenylbutyrate. Catalysis Science and Technology, 2020, 10, 7512-7522.	4.1	5
47	A recycled batch biotransformation strategy for 22-hydroxy-23,24-bisnorchol-4-ene-3-one production from high concentration of phytosterols by mycobacterial resting cells. Biotechnology Letters, 2020, 42, 2589-2594.	2.2	8
48	Facile One-Pot Immobilization of a Novel Thermostable Carboxylesterase from Geobacillus uzenensis for Continuous Pesticide Degradation in a Packed-Bed Column Reactor. Catalysts, 2020, 10, 518.	3.5	5
49	Facile One-Pot Immobilization of a Novel Esterase and Its Application in Cinnamyl Acetate Synthesis. Catalysis Letters, 2020, 150, 2517-2528.	2.6	1
50	Functional expression of a novel methanol-stable esterase from Geobacillus subterraneus DSM13552 for biocatalytic synthesis of cinnamyl acetate in a solvent-free system. BMC Biotechnology, 2020, 20, 36.	3.3	8
51	Metabolic engineering of an industrial Aspergillus niger strain for itaconic acid production. 3 Biotech, 2020, 10, 113.	2.2	16
52	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> To Overproduce Squalene. Journal of Agricultural and Food Chemistry, 2020, 68, 2132-2138.	5.2	43
53	Efficient Asymmetric Synthesis of Ethyl (<i>S</i>)-4-Chloro-3-hydroxybutyrate Using Alcohol Dehydrogenase <i>Sm</i> ADH31 with High Tolerance of Substrate and Product in a Monophasic Aqueous System. Organic Process Research and Development, 2020, 24, 1068-1076.	2.7	20
54	Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum. Microbial Cell Factories, 2020, 19, 80.	4.0	31

#	Article	IF	CITATIONS
55	Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways. Journal of Biotechnology, 2020, 314-315, 1-7.	3.8	15
56	Engineering of Trichoderma reesei for enhanced degradation of lignocellulosic biomass by truncation of the cellulase activator ACE3. Biotechnology for Biofuels, 2020, 13, 62.	6.2	43
57	Characterization and rational design for substrate specificity of a prolyl endopeptidase from Stenotrophomonas maltophilia. Enzyme and Microbial Technology, 2020, 138, 109548.	3.2	6
58	Cadmium sulfide net framework nanoparticles for photo-catalyzed cell redox. RSC Advances, 2020, 10, 37820-37825.	3.6	4
59	Enhanced cellulase production by decreasing intercellular pH through H+-ATPase gene deletion in Trichoderma reesei RUT-C30. Biotechnology for Biofuels, 2019, 12, 195.	6.2	8
60	Significantly Enhanced Production of Patchoulol in Metabolically Engineered <i>Saccharomyces cerevisiae</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 8590-8598.	5.2	32
61	Enhanced conversion of sterols to steroid synthons by augmenting the peptidoglycan synthesis gene <i>pbpB</i> in <i>Mycobacterium neoaurum</i> Journal of Basic Microbiology, 2019, 59, 924-935.	3.3	8
62	Immobilization of a Novel ESTBAS Esterase from Bacillus altitudinis onto an Epoxy Resin: Characterization and Regioselective Synthesis of Chloramphenicol Palmitate. Catalysts, 2019, 9, 620.	3.5	5
63	Metagenomic sequencing reveals microbial gene catalogue of phosphinothricin-utilized soils in South China. Gene, 2019, 711, 143942.	2.2	22
64	Characterization and engineering control of the effects of reactive oxygen species on the conversion of sterols to steroid synthons in Mycobacterium neoaurum. Metabolic Engineering, 2019, 56, 97-110.	7.0	23
65	The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei. Journal of Biological Chemistry, 2019, 294, 18435-18450.	3.4	66
66	Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme. International Journal of Biological Macromolecules, 2019, 128, 814-824.	7.5	41
67	Recent research advancements on regioselective nitrilase: fundamental and applicative aspects. Applied Microbiology and Biotechnology, 2019, 103, 6393-6405.	3.6	12
68	Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening. Microbial Cell Factories, 2019, 18, 81.	4.0	35
69	Comparison of the expression of phospholipase D from Streptomyces halstedii in different hosts and its over-expression in Streptomyces lividans. FEMS Microbiology Letters, 2019, 366, .	1.8	11
70	N,N-dimethylformamide induces cellulase production in the filamentous fungus Trichoderma reesei. Biotechnology for Biofuels, 2019, 12, 36.	6.2	21
71	Switching the regioselectivity of two nitrilases toward succinonitrile by mutating the active center pocket key residues through a semi-rational engineering. Chemical Communications, 2019, 55, 2948-2951.	4.1	7
72	Engineering diverse eubacteria promoters for robust Gene expression in Streptomyces lividans. Journal of Biotechnology, 2019, 289, 93-102.	3.8	10

#	Article	IF	Citations
73	Two-Step Bioprocess for Reducing Nucleus Degradation in Phytosterol Bioconversion by Mycobacterium neoaurum NwIB-R10hsd4A. Applied Biochemistry and Biotechnology, 2019, 188, 138-146.	2.9	12
74	Screening novel \hat{l}^2 -galactosidases from a sequence-based metagenome and characterization of an alkaline \hat{l}^2 -galactosidase for the enzymatic synthesis of galactooligosaccharides. Protein Expression and Purification, 2019, 155, 104-111.	1.3	14
75	A versatile Trichoderma reesei expression system for the production of heterologous proteins. Biotechnology Letters, 2018, 40, 965-972.	2.2	15
76	Antihypertensive Effects, Molecular Docking Study, and Isothermal Titration Calorimetry Assay of Angiotensin I-Converting Enzyme Inhibitory Peptides from <i>Chlorella vulgaris</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 1359-1368.	5.2	64
77	Primers and copper responsive promoter design and data of real-time RT-PCR assay in filamentous fungus Trichoderma reesei. Data in Brief, 2018, 16, 109-113.	1.0	0
78	Crius: A novel fragmentâ€based algorithm of <i>de novo</i> substrate prediction for enzymes. Protein Science, 2018, 27, 1526-1534.	7.6	0
79	Manufacturing Multienzymatic Complex Reactors <i>In Vivo</i> by Self-Assembly To Improve the Biosynthesis of Itaconic Acid in <i>Escherichia coli</i> ACS Synthetic Biology, 2018, 7, 1244-1250.	3.8	29
80	Identification of a yeast old yellow enzyme for highly enantioselective reduction of citral isomers to (R)-citronellal. Bioresources and Bioprocessing, 2018, 5, .	4.2	23
81	Mn2+ modulates the expression of cellulase genes in Trichoderma reesei Rut-C30 via calcium signaling. Biotechnology for Biofuels, $2018,11,54.$	6.2	51
82	Energy and conformation determine the enantioselectivity of enzyme. Biochemical Engineering Journal, 2018, 129, 106-112.	3.6	8
83	Recombinant Production and Characterization of SAC, the Core Domain of Par-4, by SUMO Fusion System. Applied Biochemistry and Biotechnology, 2018, 184, 1155-1167.	2.9	8
84	Biochemical Characterization of a Novel Thermostable Type I Pullulanase Produced Recombinantly in <i>Bacillus subtilis</i> . Starch/Staerke, 2018, 70, 1700179.	2.1	14
85	Identification and magnetic immobilization of a pyrophilous aspartic protease from Antarctic psychrophilic fungus. Journal of Food Biochemistry, 2018, 42, e12691.	2.9	15
86	Metabolic Adaptation of <i>Mycobacterium neoaurum</i> ATCC 25795 in the Catabolism of Sterols for Producing Important Steroid Intermediates. Journal of Agricultural and Food Chemistry, 2018, 66, 12141-12150.	5. 2	13
87	N-Terminal Domain Truncation and Domain Insertion-Based Engineering of a Novel Thermostable Type I Pullulanase from <i>Geobacillus thermocatenulatus</i> Journal of Agricultural and Food Chemistry, 2018, 66, 10788-10798.	5.2	19
88	CRISPR/Cpf1 facilitated large fragment deletion in <i>Saccharomyces cerevisiae</i> . Journal of Basic Microbiology, 2018, 58, 1100-1104.	3.3	11
89	Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. Biotechnology Letters, 2018, 40, 1253-1261.	2.2	9
90	Establishment of a lowâ€dosageâ€IPTG inducible expression system construction method in <i>Escherichia coli</i> . Journal of Basic Microbiology, 2018, 58, 806-810.	3.3	9

#	Article	IF	Citations
91	Integrated Transcriptome and Proteome Studies Reveal the Underlying Mechanisms for Sterol Catabolism and Steroid Production in $\langle i \rangle$ Mycobacterium neoaurum $\langle i \rangle$. Journal of Agricultural and Food Chemistry, 2018, 66, 9147-9157.	5.2	20
92	Engineered 3-Ketosteroid $9\hat{l}\pm$ -Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Applied and Environmental Microbiology, 2018, 84, .	3.1	29
93	Construction of enhanced transcriptional activators for improving cellulase production in Trichoderma reesei RUT C30. Bioresources and Bioprocessing, 2018, 5, 40.	4.2	23
94	Construction and characterization of the recombinant immunotoxin RTA-4D5-KDEL targeting HER2/neu-positive cancer cells and locating the endoplasmic reticulum. Applied Microbiology and Biotechnology, 2018, 102, 9585-9594.	3.6	14
95	Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators. Microbial Cell Factories, 2018, 17, 75.	4.0	51
96	Identification of the enzymes responsible for 3-hydroxypropionic acid formation and their use in improving 3-hydroxypropionic acid production in Gluconobacter oxydans DSM 2003. Bioresource Technology, 2018, 265, 328-333.	9.6	15
97	ldentification of an Interaction Between a Histidine Kinase Response Regulator Hybrid Protein and 2-keto-3-deoxy-D-manno-octulosonate-8- Phosphate Synthase in Gluconobacter oxydans. Protein and Peptide Letters, 2018, 24, 990-995.	0.9	1
98	Structural and biochemical properties of a novel pullulanase of <i>Paenibacillus lautus</i> DSM 3035. Starch/Staerke, 2017, 69, 1500333.	2.1	7
99	Functional expression of a novel $\hat{l}\pm$ -amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnology, 2017, 17, 22.	3.3	47
100	Cinnamyl Esters Synthesis By Lipase-Catalyzed Transesterification in a Non-Aqueous System. Catalysis Letters, 2017, 147, 946-952.	2.6	14
101	Switching a nitrilase from Syechocystis sp. PCC6803 to a nitrile hydratase by rationally regulating reaction pathways. Catalysis Science and Technology, 2017, 7, 1122-1128.	4.1	19
102	Enhancement of ethyl (S)-4-chloro-3-hydroxybutanoate production at high substrate concentration by in situ resin adsorption. Journal of Biotechnology, 2017, 251, 68-75.	3.8	11
103	Development of nitrilase-mediated process for phenylacetic acid production from phenylacetonitrile. Chemical Papers, 2017, 71, 1985-1992.	2.2	7
104	Triosephosphate isomerase 1 suppresses growth, migration and invasion of hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications, 2017, 482, 1048-1053.	2.1	44
105	A novel nitrilase from Ralstonia eutropha H16 and its application to nicotinic acid production. Bioprocess and Biosystems Engineering, 2017, 40, 1271-1281.	3.4	14
106	Reversible Photocontrol of Lipase Activity by Incorporating a Photoswitch into the Lid Domain. ChemPhotoChem, 2017, 1, 393-396.	3.0	8
107	Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes. Microbial Cell Factories, 2017, 16, 89.	4.0	39
108	Design and evaluation of a phospholipase D based drug delivery strategy of novel phosphatidyl-prodrug. Biomaterials, 2017, 131, 1-14.	11.4	21

#	Article	IF	Citations
109	Secondâ€Generation Engineering of a Thermostable Transketolase (TK _{Gst}) for Aliphatic Aldehyde Acceptors with Either Improved or Reversed Stereoselectivity. ChemBioChem, 2017, 18, 455-459.	2.6	19
110	Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to $9\hat{1}\pm Hydroxy-4$ -androstene-3,17-dione in <i>Mycobacterium neoaurum</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 626-631.	5.2	34
111	Novel Application of Magnetic Protein: Convenient One-Step Purification and Immobilization of Proteins. Scientific Reports, 2017, 7, 13329.	3.3	18
112	Copper-mediated on-off control of gene expression in filamentous fungus Trichoderma reesei. Journal of Microbiological Methods, 2017, 143, 63-65.	1.6	8
113	Autotransporter domain-dependent enzymatic analysis of a novel extremely thermostable carboxylesterase with high biodegradability towards pyrethroid pesticides. Scientific Reports, 2017, 7, 3461.	3.3	27
114	Characterization of a novel nitrilase, BGC4, from Paraburkholderia graminis showing wide-spectrum substrate specificity, a potential versatile biocatalyst for the degradation of nitriles. Biotechnology Letters, 2017, 39, 1725-1731.	2.2	11
115	Enhancement of 9α-Hydroxy-4-androstene-3,17-dione Production from Soybean Phytosterols by Deficiency of a Regulated Intramembrane Proteolysis Metalloprotease in Mycobacterium neoaurum. Journal of Agricultural and Food Chemistry, 2017, 65, 10520-10525.	5.2	15
116	Dipeptidyl peptidase IV inhibitory peptides from Chlorella vulgaris: in silico gastrointestinal hydrolysis and molecular mechanism. European Food Research and Technology, 2017, 243, 1739-1748.	3.3	19
117	Use of transcription activator-like effector for efficient gene modification and transcription in the filamentous fungus <i>Trichoderma reesei</i> Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1367-1373.	3.0	16
118	Enhanced itaconic acid production by selfâ€assembly of two biosynthetic enzymes in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2017, 114, 457-462.	3.3	30
119	Transesterification Synthesis of Chloramphenicol Esters with the Lipase from Bacillus amyloliquefaciens. Molecules, 2017, 22, 1523.	3.8	11
120	Cloning and characterization of three ketoreductases from soil metagenome for preparing optically active alcohols. Biotechnology Letters, 2016, 38, 1799-1808.	2.2	2
121	Effects of carbonyl iron powder on iron deficiency anemia and its subchronic toxicity. Journal of Food and Drug Analysis, 2016, 24, 746-753.	1.9	13
122	Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-d-gluconic acid by Gluconobacter oxydans. Microbial Cell Factories, 2016, 15, 121.	4.0	34
123	Efficient kinetic resolution of secondary alcohols using an organic solvent-tolerant esterase in non-aqueous medium. Biotechnology Letters, 2016, 38, 1165-1171.	2.2	9
124	A novel saccharifying αâ€amylase of Antarctic psychrotolerant fungi <i>Geomyces pannorum</i> Cloning, functional expression, and characterization. Starch/Staerke, 2016, 68, 20-28.	2.1	11
125	Effective improvement of the activity of membrane-bound alcohol dehydrogenase by overexpression of adhS in Gluconobacter oxydans. Biotechnology Letters, 2016, 38, 1131-1138.	2.2	9
126	Heterologous Overexpression and Biochemical Characterization of a Nitroreductase from Gluconobacter oxydans 621H. Molecular Biotechnology, 2016, 58, 428-440.	2.4	8

#	Article	IF	CITATIONS
127	Practical two-step synthesis of enantiopure styrene oxide through an optimized chemoenzymatic approach. Applied Microbiology and Biotechnology, 2016, 100, 8757-8767.	3.6	14
128	Biodegradation of waste greases and biochemical properties of a novel lipase from Pseudomonas synxantha PS1. Canadian Journal of Microbiology, 2016, 62, 588-599.	1.7	6
129	A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters. Microbial Cell Factories, 2016, 15, 41.	4.0	61
130	Gigantoxin-4-4D5 scFv is a novel recombinant immunotoxin with specific toxicity against HER2/neu-positive ovarian carcinoma cells. Applied Microbiology and Biotechnology, 2016, 100, 6403-6413.	3.6	16
131	Fe ³⁺ -induced bioinspired chitosan hydrogels for the sustained and controlled release of doxorubicin. RSC Advances, 2016, 6, 47940-47947.	3.6	14
132	Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003. Journal of Biotechnology, 2016, 237, 18-24.	3.8	13
133	A screening analysis of the CJB2 c.176 del 16 mutation responsible for hereditary deafness in a Chinese family. Journal of Otology, 2016, 11, 134-137.	1.0	2
134	Single nucleotide polymorphism analysis for the production of valuable steroid intermediates in Mycobacterium neoaurum. Biotechnology Letters, 2016, 38, 1881-1892.	2.2	7
135	Characterization of a Novel î±- <scp>I</scp> -Arabinofuranosidase from <i>Ruminococcus albus</i> and Rational Design for Its Thermostability. Journal of Agricultural and Food Chemistry, 2016, 64, 7546-7554.	5.2	8
136	Cellâ€penetrating and endoplasmic reticulumâ€locating TATâ€lLâ€24â€KDEL fusion protein induces tumor apoptosis. Journal of Cellular Physiology, 2016, 231, 84-93.	4.1	26
137	Bioprospecting metagenomics of a microbial community on cotton degradation: Mining for new glycoside hydrolases. Journal of Biotechnology, 2016, 234, 35-42.	3.8	5
138	A Semiautomated Structure-Based Method To Predict Substrates of Enzymes via Molecular Docking: A Case Study with <i>Candida antarctica</i> Lipase B. Journal of Chemical Information and Modeling, 2016, 56, 1979-1994.	5.4	5
139	Characterization of an ene-reductase from Meyerozyma guilliermondii for asymmetric bioreduction of \hat{l}_{\pm},\hat{l}^2 -unsaturated compounds. Biotechnology Letters, 2016, 38, 1527-1534.	2.2	13
140	Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Scientific Reports, 2016, 6, 21928.	3.3	71
141	A New Strategy for the Enzymatic Degradation of Sudan Dyes in Non-alkaline Conditions. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	3
142	Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol. Microbial Cell Factories, 2016, 15, 191.	4.0	17
143	The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis. Scientific Reports, 2016, 6, 34750.	3.3	81
144	A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei. Journal of Biotechnology, 2016, 240, 85-93.	3.8	19

#	Article	IF	Citations
145	Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0. Scientific Reports, 2016, 6, 20761.	3.3	37
146	An Acid-Adapted Endo- \hat{l} ±-1,5-l-arabinanase for Pectin Releasing. Applied Biochemistry and Biotechnology, 2016, 180, 900-916.	2.9	7
147	RNA-Seq analysis uncovers non-coding small RNA system of Mycobacterium neoaurum in the metabolism of sterols to accumulate steroid intermediates. Microbial Cell Factories, 2016, 15, 64.	4.0	19
148	Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis. Biotechnology and Applied Biochemistry, 2016, 63, 465-470.	3.1	7
149	Molecular cloning and expression of a new αâ€neoagarobiose hydrolase from <i>Agarivorans gilvus</i> WH0801 and enzymatic production of 3,6â€anhydroâ€ <scp>l</scp> â€galactose. Biotechnology and Applied Biochemistry, 2016, 63, 230-237.	3.1	19
150	Identification of an interaction between EI and a histidine kinase-response regulator hybrid protein in Gluconobacter oxydans. Biochemical and Biophysical Research Communications, 2016, 470, 331-335.	2.1	1
151	Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis. Journal of Biotechnology, 2016, 219, 142-148.	3.8	15
152	Expression, characterization of a novel nitrilase PpL19 from Pseudomonas psychrotolerans with S-selectivity toward mandelonitrile present in active inclusion bodies. Biotechnology Letters, 2016, 38, 455-461.	2.2	7
153	A novel host-vector system for heterologous protein co-expression and purification in the Trichoderma reesei industrial strain RUT-C30. Biotechnology Letters, 2016, 38, 89-96.	2.2	9
154	Towards the computational design and engineering of enzyme enantioselectivity: A case study by a carbonyl reductase from Gluconobacter oxydans. Journal of Biotechnology, 2016, 217, 31-40.	3.8	30
155	Identification of novel thermostable taurine–pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis. Applied Microbiology and Biotechnology, 2016, 100, 3101-3111.	3.6	29
156	A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide. Applied Biochemistry and Biotechnology, 2016, 178, 173-183.	2.9	20
157	TAT-IL-24-KDEL-induced apoptosis is inhibited by survivin but restored by the small molecular survivin inhibitor, YM155, in cancer cells. Oncotarget, 2016, 7, 37030-37042.	1.8	7
158	Construction of an Oscillator Gene Circuit by Negative and Positive Feedbacks. Journal of Microbiology and Biotechnology, 2016, 26, 139-144.	2.1	1
159	Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation. Journal of Microbiology and Biotechnology, 2016, 26, 1924-1932.	2.1	6
160	A novel cold-adapted type I pullulanase of Paenibacillus polymyxa Nws-pp2: in vivo functional expression and biochemical characterization of glucans hydrolyzates analysis. BMC Biotechnology, 2015, 15, 96.	3.3	25
161	Efficient hydration of 2-amino-2,3-dimethylbutyronitrile to 2-amino-2,3-dimethylbutyramide in a biphasic system via an easily prepared whole-cell biocatalyst. Green Chemistry, 2015, 17, 3992-3999.	9.0	14
162	Efficient synthesis of optically active halogenated aryl alcohols at high substrate load using a recombinant carbonyl reductase from Gluconobacter oxydans. Journal of Molecular Catalysis B: Enzymatic, 2015, 118, 1-7.	1.8	6

#	Article	IF	CITATIONS
163	Directed evolution of nitrilase PpL19 from Pseudomonas psychrotolerans L19 and identification of enantiocomplementary mutants toward mandelonitrile. Biochemical and Biophysical Research Communications, 2015, 468, 820-825.	2.1	10
164	One-step purification and immobilization of his-tagged protein via Ni2+-functionalized Fe3O4@polydopamine magnetic nanoparticles. Biotechnology and Bioprocess Engineering, 2015, 20, 901-907.	2.6	46
165	Efficient enzymatic synthesis of ampicillin by mutant Alcaligenes faecalis penicillin G acylase. Journal of Biotechnology, 2015, 199, 62-68.	3.8	12
166	Cloning, expression, and characterization of an anti-Prelog stereospecific carbonyl reductase from Gluconobacter oxydans DSM2343. Enzyme and Microbial Technology, 2015, 70, 18-27.	3.2	14
167	Engineered Expression Vectors Significantly Enhanced the Production of 2-Keto- <scp>d</scp> -gluconic Acid by <i>Gluconobacter oxidans</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 5492-5498.	5.2	17
168	Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Applied Microbiology and Biotechnology, 2015, 99, 9511-9521.	3.6	22
169	Novel α- <scp>l</scp> -Arabinofuranosidase from <i>Cellulomonas fimi</i> ATCC 484 and Its Substrate-Specificity Analysis with the Aid of Computer. Journal of Agricultural and Food Chemistry, 2015, 63, 3725-3733.	5.2	14
170	A computational strategy for altering an enzyme in its cofactor preference to <scp>NAD</scp> (H) and/or <scp>NADP</scp> (H). FEBS Journal, 2015, 282, 2339-2351.	4.7	23
171	Fe ³⁺ -induced oxidation and coordination cross-linking in catechol–chitosan hydrogels under acidic pH conditions. RSC Advances, 2015, 5, 37377-37384.	3.6	78
172	Metabolic engineering of Pichia pastoris for the production of dammarenediol-II. Journal of Biotechnology, 2015, 216, 47-55.	3.8	53
173	Process Development for the Production of $(\langle i\rangle R\langle i\rangle)$ - (\hat{a}°) -Mandelic Acid by Recombinant $\langle i\rangle$ Escherichia coli $\langle i\rangle$ Cells Harboring Nitrilase from $\langle i\rangle$ Burkholderia cenocepacia $\langle i\rangle$ J2315. Organic Process Research and Development, 2015, 19, 2012-2016.	2.7	35
174	Protein Engineering of a Nitrilase from Burkholderia cenocepacia J2315 for Efficient and Enantioselective Production of ($\langle i > R < / i > - \langle i > o < / i > - Chloromandelic Acid. Applied and Environmental Microbiology, 2015, 81, 8469-8477.$	3.1	24
175	An effective method for extraction of glutaryl-7-aminocephalosporanic acid acylase from recombinant E. coli cells. Biotechnology and Bioprocess Engineering, 2015, 20, 718-724.	2.6	1
176	Construction of a Shuttle Vector for Heterologous Expression of a Novel Fungal i¿½i½½-Amylase Gene in Aspergillus oryzae. Journal of Microbiology and Biotechnology, 2015, 25, 988-998.	2.1	4
177	Investigation of factors affecting biotransformation of phytosterols to 9-hydroxyandrost-4-ene-3,-17-dione based on the HP-Î ² -CD-resting cells reaction system. Biocatalysis and Biotransformation, 2014, 32, 343-347.	2.0	23
178	Optimization of the lipase-catalyzed irreversible transesterification of Pistacia chinensis Bunge seed oil for biodiesel production. Russian Chemical Bulletin, 2014, 63, 2719-2728.	1.5	5
179	Enhanced production of heterologous proteins by the filamentous fungus Trichoderma reesei via disruption of the alkaline serine protease SPW combined with a pH control strategy. Plasmid, 2014, 71, 16-22.	1.4	33
180	Structure, mechanism, and enantioselectivity shifting of lipase LipK107 with a simple way. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1183-1192.	2.3	6

#	Article	IF	Citations
181	Cloning and characterisation of a novel neoagarotetraose-forming-β-agarase, AgWH50A from Agarivorans gilvus WH0801. Carbohydrate Research, 2014, 388, 147-151.	2.3	36
182	Characterization and engineering of 3-ketosteroid- \hat{a} - \hat{a} -1-dehydrogenase and 3-ketosteroid- $\hat{9}$ 1±-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce $\hat{9}$ 1±-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Metabolic Engineering, 2014, 24, 181-191.	7.0	106
183	Characterization and identification of three novel aldo–keto reductases from Lodderomyces elongisporus for reducing ethyl 4-chloroacetoacetate. Archives of Biochemistry and Biophysics, 2014, 564, 219-228.	3.0	15
184	Artificial Multienzyme Supramolecular Device: Highly Ordered Selfâ€Assembly of Oligomeric Enzymes In Vitro and In Vivo. Angewandte Chemie - International Edition, 2014, 53, 14027-14030.	13.8	64
185	Enhancement of the activity of enzyme immobilized on polydopamine-coated iron oxide nanoparticles by rational orientation of formate dehydrogenase. Journal of Biotechnology, 2014, 188, 36-41.	3.8	41
186	Improving Gluconobacter oxydans performance in the in situ removal of the inhibitor for asymmetric resolution of racemic 1-phenyl-1,2-ethanediol. Bioresource Technology, 2014, 159, 327-333.	9.6	8
187	Characterization of a Putative Stereoselective Oxidoreductase from Gluconobacter oxydans and Its Application in Producing Ethyl (R)-4-Chloro-3-Hydroxybutanoate Ester. Molecular Biotechnology, 2014, 56, 285-295.	2.4	26
188	Light-mediated control of gene expression in filamentous fungus Trichoderma reesei. Journal of Microbiological Methods, 2014, 103, 37-39.	1.6	15
189	Combined cross-linked enzyme aggregates (combi-CLEAs) for efficient integration of a ketoreductase and a cofactor regeneration system. Journal of Biotechnology, 2014, 184, 7-10.	3.8	30
190	Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans. Journal of Biotechnology, 2014, 175, 69-74.	3.8	24
191	Improving the Expression of Recombinant Proteins in E. coli BL21 (DE3) under Acetate Stress: An Alkaline pH Shift Approach. PLoS ONE, 2014, 9, e112777.	2.5	32
192	Phosphorylation of HPr by HPr Kinase in Gluconobacter oxydans 621H. Protein and Peptide Letters, 2014, 21, 597-601.	0.9	3
193	<i>Carica papaya</i> Lipase Catalysed Resolution of βâ€Amino Esters for the Highly Enantioselective Synthesis of (<i>S</i>)â€Dapoxetine. European Journal of Organic Chemistry, 2013, 2013, 557-565.	2.4	16
194	Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metabolic Engineering, 2013, 15, 75-87.	7.0	84
195	Computational design of short-chain dehydrogenase Gox2181 for altered coenzyme specificity. Journal of Biotechnology, 2013, 167, 386-392.	3.8	12
196	Lactobacillus curieae sp. nov., isolated from stinky tofu brine. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2501-2505.	1.7	28
197	EXTRACTION OF ACETOIN FROM FERMENTATION BROTH USING AN ACETONE/PHOSPHATE AQUEOUS TWO-PHASE SYSTEM. Chemical Engineering Communications, 2012, 199, 1492-1503.	2.6	37
198	Functions of membrane-bound alcohol dehydrogenase and aldehyde dehydrogenase in the bio-oxidation of alcohols in Gluconobacter oxydans DSM 2003. Biotechnology and Bioprocess Engineering, 2012, 17, 1156-1164.	2.6	15

#	Article	IF	CITATIONS
199	Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. Biotechnology and Bioprocess Engineering, 2012, 17, 598-605.	2.6	40
200	Effect of copper sulfate on biosynthesis of FR-008/Candicidin complex production in Streptomyces sp World Journal of Microbiology and Biotechnology, 2011, 27, 2033-2039.	3.6	4
201	Lipases in the castor bean seed of Chinese varieties: Activity comparison, purification and characterization. Journal of Shanghai University, 2010, 14, 137-144.	0.1	15
202	Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid in the absence of hydrogen peroxide. World Journal of Microbiology and Biotechnology, 2010, 26, 145-152.	3.6	9
203	A novel protocol of energy optimisation for predicted protein structures built by homology modelling. Molecular Simulation, 2010, 36, 1104-1109.	2.0	1
204	Overâ€expression of glycerol dehydrogenase and 1,3â€propanediol oxidoreductase in <i>Klebsiella pneumoniae</i> and their effects on conversion of glycerol into 1,3â€propanediol in resting cell system. Journal of Chemical Technology and Biotechnology, 2009, 84, 626-632.	3.2	21
205	Enhancement of Gluconobacter oxydanscatalyzing D-lactic acid production by coupling of synthesis and separation. Journal of Chemical Technology and Biotechnology, 2009, 84, 1742-1746.	3.2	5
206	Synthesis of biotinylated $18\hat{i}^2$ -glycyrrhetinic acid and its effect on tumor cells activity. Medicinal Chemistry Research, 2009, 18, 538-544.	2.4	6
207	Rapid Analysis of Asarone and Asaryladehyde in FructusÂCarotae by LC. Chromatographia, 2009, 69, 549-553.	1.3	4
208	Chemical Fingerprint and Quantitative Analysis of Cirsium setosum by LC. Chromatographia, 2009, 70, 125-131.	1.3	15
209	Establishment of a Fingerprint of Raspberries by LC. Chromatographia, 2009, 70, 981-985.	1.3	14
210	Leakage of recombinant penicillin G acylase from Escherichia coli by adding chloroform under fermentation conditions. World Journal of Microbiology and Biotechnology, 2008, 24, 2365-2367.	3.6	0
211	Functional display of <i>Rhizomucor miehei</i> lipase on surface of <i>Saccharomyces cerevisiae</i> with higher activity and its practical properties. Journal of Chemical Technology and Biotechnology, 2008, 83, 329-335.	3.2	14
212	Oneâ€step production of 2,3â€butanediol from starch by secretory overâ€expression of amylase in <i>Klebsiella pneumoniae</i> . Journal of Chemical Technology and Biotechnology, 2008, 83, 1409-1412.	3.2	17
213	Study of the crystal shape and its influence on the antiâ€tumor activity of tumor necrosis factorâ€related apoptosisâ€inducing ligand (Apo2L/TRAIL). Crystal Research and Technology, 2008, 43, 888-893.	1.3	10
214	Activity of Schisandrin C Isolated from <i>Schisandra chinensis </i> Pharmaceutical Biology, 2008, 46, 906-913.	2.9	5
215	Optimisation of enzymatic synthesis of cefaclor within situproduct removal and continuous acyl donor feeding. Biocatalysis and Biotransformation, 2007, 25, 59-64.	2.0	6
216	Protective Effects of Salidroside on Hypoxia/Reoxygenation Injury by Sodium Hydrosulfite in PC12 Cells. Pharmaceutical Biology, 2007, 45, 604-612.	2.9	8

#	Article	IF	Citations
217	Synthesis of succinic acid 12α-deoxoartemisinyl ester 4′-O-demethyl-4β-(4″-nitroanilino)-4-desoxypodophyllotoxin. Chemistry of Natural Compounds, 2007, 43, 539-541.	0.8	3
218	Synthesis of a novel $18\hat{l}^2$ -glycyrrhetinic acid derivative. Chemistry of Natural Compounds, 2006, 42, 325-327.	0.8	4
219	Application of a silica gel prolonged-release system for methanol in the production of biodiesel. Journal of Chemical Technology and Biotechnology, 2006, 81, 1846-1848.	3.2	10
220	Effect of yeast extract on the expression of thioredoxin–human parathyroid hormone from recombinantEscherichia coli. Journal of Chemical Technology and Biotechnology, 2006, 81, 1866-1871.	3.2	16
221	Inhibitive Effect of Prodigiosin on the Proliferation of Human Malignant Pancreatic Cancer Cells. Medicinal Chemistry Research, 2005, 14, 181-197.	2.4	7
222	Strategy for the Improvement of Prodigiosin Production by a Serratia marcescens Mutant through Fed-Batch Fermentation. World Journal of Microbiology and Biotechnology, 2005, 21, 969-972.	3.6	47
223	Highly efficient conversion of polysialoganglioside to GM1 withBrevibacterium caseias a microbial biocatalyst. Biocatalysis and Biotransformation, 2005, 23, 29-32.	2.0	5
224	Studies on a novel carbon source and cosolvent for lipase production by Candida rugosa. Journal of Industrial Microbiology and Biotechnology, 2004, 31, 133-136.	3.0	11
225	Semi-continuous enzymatic synthesis of cefaclor enhanced byin situ product removal. Journal of Chemical Technology and Biotechnology, 2004, 79, 480-485.	3.2	6
226	Quantification of doxorubicin and validation of reversal effect of tea polyphenols on multidrug resistance in human carcinoma cells. Biotechnology Letters, 2003, 25, 291-294.	2.2	24
227	Effects of ethylene glycol on the synthesis of ampicillin using immobilized penicillin G acylase. Journal of Chemical Technology and Biotechnology, 2003, 78, 431-436.	3.2	34
228	Study of the Stability of Oligodeoxynucleotide–Doxorubicin Conjugate In Vitro and Its Pharmacokinetics In Vivo by RPâ€HPLC. Journal of Liquid Chromatography and Related Technologies, 2003, 26, 3105-3115.	1.0	5
229	Enzymatic Synthesis of Ethyl-glucoside Monooleate with Lipase in Solvent-free Medium. Biocatalysis and Biotransformation, 2003, 21, 135-139.	2.0	6
230	Partitioning behaviour of cephalexin and 7-aminodeacetoxicephalosporanic acid in PEG/ammonium sulfate aqueous two-phase systems. Journal of Chemical Technology and Biotechnology, 2001, 76, 1194-1200.	3.2	14
231	Partitioning behaviour of cephalexin and 7â€aminodeacetoxicephalosporanic acid in PEG/ammonium sulfate aqueous twoâ€phase systems. Journal of Chemical Technology and Biotechnology, 2001, 76, 1194-1200.	3.2	1
232	Interaction of naphthyl heterocycles with DNA: effects of thiono and thio groups. Perkin Transactions II RSC, 2000, , 715-718.	1.1	38
233	Synthesis, crystal structure, and properties of 2H-4,8-dimethylfuro[2′,3′:5,6]naphtho[1,2-b]pyran-2-one, a novel DNA intercalator. Monatshefte FÃ1⁄4r Chemie, 1996, 127, 569-577.	1.8	8
234	Sequential resolution of ($\langle i \rangle S \langle i \rangle$) and ($\langle i \rangle R \langle i \rangle$)-6-fluoro-chroman-2-carboxylic acid by two esterases in turn. Green Chemistry, 0, , .	9.0	1

ARTICLE

Engineering <i>Mycolicibacterium neoaurum </i>
i> for the production of antioxidant ergothioneine., 0,

2

2