
Matthew W Blair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8931102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46, 707-713.	21.4	1,159
2	Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica, 2006, 147, 105-131.	1.2	448
3	Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. Trends in Plant Science, 2016, 21, 31-42.	8.8	293
4	Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Critical Reviews in Plant Sciences, 2015, 34, 43-104.	5.7	248
5	SNP marker diversity in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2011, 123, 827-845.	3.6	182

6 Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

7	Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theoretical and Applied Genetics, 2006, 112, 924-933.	3.6	168
8	Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2009, 119, 955-972.	3.6	158
9	Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean. BMC Genetics, 2012, 13, 48.	2.7	143
10	Diversification and Population Structure in Common Beans (Phaseolus vulgaris L.). PLoS ONE, 2012, 7, e49488.	2.5	139
11	A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2013, 126, 535-548.	3.6	139
12	Drought Tolerance in Wild Plant Populations: The Case of Common Beans (Phaseolus vulgaris L.). PLoS ONE, 2013, 8, e62898.	2.5	137
13	Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theoretical and Applied Genetics, 2009, 120, 1-12.	3.6	134
14	Quantitative Trait Loci Associated with Drought Tolerance in Common Bean. Crop Science, 2014, 54, 923-938.	1.8	129
15	Genotyping by Sequencing and Genome–Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought. Frontiers in Plant Science, 2018, 9, 128.	3.6	129
16	Mineral Biofortification Strategies for Food Staples: The Example of Common Bean. Journal of Agricultural and Food Chemistry, 2013, 61, 8287-8294.	5.2	126
17	QTL Analysis of Seed Iron, Zinc, and Phosphorus Levels in an Andean Bean Population. Crop Science, 2009, 49, 1742-1750.	1.8	125
18	Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. Plant Science, 2016, 242, 250-259.	3.6	122

MATTHEW W BLAIR

#	Article	IF	CITATIONS
19	QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus) Tj ETQq1 1	0.784314 3.6	rgBT/Overloo
20	Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2012, 125, 1069-1085.	3.6	114
21	Genomics of Phaseolus Beans, a Major Source of Dietary Protein and Micronutrients in the Tropics. , 2008, , 113-143.		114
22	Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS ONE, 2018, 13, e0189597.	2.5	108
23	Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theoretical and Applied Genetics, 2008, 117, 629-640.	3.6	103
24	QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2011, 122, 511-521.	3.6	102
25	Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.). BMC Genetics, 2012, 13, 58.	2.7	100
26	Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. Nature Genetics, 2020, 52, 118-125.	21.4	81
27	A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Frontiers in Plant Science, 2013, 4, 275.	3.6	80
28	Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biology, 2011, 11, 50.	3.6	79
29	Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theoretical and Applied Genetics, 2012, 125, 1015-1031.	3.6	77
30	A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Molecular Breeding, 2019, 39, 1.	2.1	72
31	BAC-end Sequence Analysis and a Draft Physical Map of the Common Bean (Phaseolus vulgaris L.) Genome. Tropical Plant Biology, 2008, 1, 40-48.	1.9	70
32	Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions. Molecular Breeding, 2012, 30, 681-695.	2.1	65
33	Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus) Tj ETQq1 1 0.78	84314 rgB	T /Overlock 1
34	Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus) Tj ETQq() 0,0 rgBT	Overlock 10 62
35	Saturation of an Intra-Gene Pool Linkage Map: Towards a Unified Consensus Linkage Map for Fine Mapping and Synteny Analysis in Common Bean. PLoS ONE, 2011, 6, e28135.	2.5	61
36	Integration of physical and genetic maps of common bean through BAC-derived microsatellite	2.8	59

markers. BMC Genomics, 2010, 11, 436.

3

#	Article	IF	CITATIONS
37	Does the Genomic Landscape of Species Divergence in Phaseolus Beans Coerce Parallel Signatures of Adaptation and Domestication?. Frontiers in Plant Science, 2018, 9, 1816.	3.6	56
38	Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genomics, 2009, 10, 629.	2.8	55
39	QTL Analysis of Root Architecture Traits and Low Phosphorus Tolerance in an Andean Bean Population. Crop Science, 2009, 49, 59-68.	1.8	51
40	Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris) Tj ETQq0 0	0 rgBT /Ον	erlock 10 Tf
41	Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L.) Genotypes in Response to Fusarium oxysporum f. sp. phaseoli. PLoS ONE, 2015, 10, e0127698.	2.5	51
42	Diversity in Grain Amaranths and Relatives Distinguished by Genotyping by Sequencing (GBS). Frontiers in Plant Science, 2017, 8, 1960.	3.6	44
43	Genetic mapping of the bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2006, 114, 261-271.	3.6	42
44	CEL I Nuclease Digestion for SNP Discovery and Marker Development in Common Bean (<i>Phaseolus) Tj ETQq0 (</i>) 0. _{[g} BT /C	Overlock 10 1
45	Morphological Assessment of Cultivated and Wild Amaranth Species Diversity. Agronomy, 2018, 8, 272.	3.0	38
46	Allelic Diversity at Abiotic Stress Responsive Genes in Relationship to Ecological Drought Indices for Cultivated Tepary Bean, Phaseolus acutifolius A. Gray, and Its Wild Relatives. Genes, 2021, 12, 556.	2.4	38
47	Development of microsatellite markers for common bean (Phaseolus vulgaris L.) based on screening of non-enriched, small-insert genomic libraries. Genome, 2009, 52, 772-782.	2.0	37
48	Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean. Theoretical and Applied Genetics, 2010, 121, 393-402.	3.6	37
49	Inheritance of seed phytate and phosphorus levels in common bean (Phaseolus vulgaris L.) and association with newly-mapped candidate genes. Molecular Breeding, 2012, 30, 1265-1277.	2.1	36
50	Hybrid weakness controlled by the dosageâ€dependent lethal (DL) gene system in common bean (<i>Phaseolus vulgaris</i>) is caused by a shootâ€derived inhibitory signal leading to salicylic acidâ€associated root death. New Phytologist, 2007, 176, 537-549.	7.3	34
51	Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.). BMC Plant Biology, 2011, 11, 171.	3.6	28
52	Extensive diversity and inter-genepool introgression in a world-wide collection of indeterminate snap bean accessions. Theoretical and Applied Genetics, 2010, 120, 1381-1391.	3.6	26
53	Linkage disequilibrium at the APA insecticidal seed protein locus of common bean (Phaseolus vulgaris) Tj ETQq1	0.784314	1 rgBT /Overl
54	Molecular Characterization of Mung Bean Germplasm from the USDA Core Collection Using Newly Developed KASPâ€based SNP Markers. Crop Science, 2018, 58, 1659-1670.	1.8	25

MATTHEW W BLAIR

#	Article	IF	CITATIONS
55	Role of Legumes for and as Horticultural Crops in Sustainable Agriculture. Sustainable Development and Biodiversity, 2016, , 185-211.	1.7	22
56	Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. Plant Science, 2017, 260, 1-7.	3.6	22
57	Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans. Genetics and Molecular Biology, 2017, 40, 109-122.	1.3	21
58	Genetic diversity of Colombian landraces of common bean as detected through the use of silver-stained and fluorescently labelled microsatellites. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 86-96.	0.8	20
59	QTL and candidate genes associated with common bacterial blight resistance in the common bean cultivar Longyundou 5 from China. Crop Journal, 2016, 4, 344-352.	5.2	18
60	Identification and Mapping of Simple Sequence Repeat Markers from Common Bean (<i>Phaseolus) Tj ETQq0 0 0 Genetic–Physical Map Integration. Plant Genome, 2010, 3, .</i>) rgBT /Ove 2.8	erlock 10 Tf 17
61	Salicylic Acid Enhances Resistance to Fusarium oxysporum f. sp. phaseoli in Common Beans (Phaseolus) Tj ETQq1	1.0.7843 5.1	14 ₁ 7gBT /O
62	Genetic Relatedness of Mexican Common Bean Cultivars Revealed by Microsatellite Markers. Crop Science, 2011, 51, 2655-2667.	1.8	16
63	EST ―SSR markers from five sequenced cDNA libraries of common bean (P haseolus vulgaris L.) comparing three bioinformatic algorithms. Molecular Ecology Resources, 2013, 13, 688-695.	4.8	16
64	Development of mapped simple sequence repeat markers from common bean (Phaseolus vulgaris L.) based on genome sequences of a Chinese landrace and diversity evaluation. Molecular Breeding, 2014, 33, 489-496.	2.1	16
65	Relationship of Cultivated Grain Amaranth Species and Wild Relative Accessions. Genes, 2021, 12, 1849.	2.4	14
66	Bases for the Establishment of Robusta Coffee (Coffea canephora) as a New Crop for Colombia. Agronomy, 2021, 11, 2550.	3.0	14
67	Development and mapping of SSR markers linked to resistance-gene homologue clusters in common bean. Crop Journal, 2014, 2, 183-194.	5.2	13
68	New geneâ€derived simple sequence repeat markers for common bean (<i>Phaseolus vulgaris</i> L.). Molecular Ecology Resources, 2012, 12, 661-668.	4.8	12
69	Cloning and characterization of a novel secretory root-expressed peroxidase gene from common bean (Phaseolus vulgaris L.) infected with Fusarium oxysporum f. sp. Phaseoli. Molecular Breeding, 2014, 34, 855-870.	2.1	12
70	Lessons from Common Bean on How Wild Relatives and Landraces Can Make Tropical Crops More Resistant to Climate Change. , 2018, , .		10
71	Isolation and Characterization of Nucleotide-Binding Site Resistance Gene Homologues in Common Bean (<i>Phaseolus vulgaris</i>). Phytopathology, 2013, 103, 156-168.	2.2	9
72	Naturally Available Genetic Adaptation in Common Bean and Its Response to Climate Change. , 2018, , .		9

MATTHEW W BLAIR

#	Article	IF	CITATIONS
73	BAC-End Microsatellites from Intra and Inter-Genic Regions of the Common Bean Genome and Their Correlation with Cytogenetic Features. PLoS ONE, 2014, 9, e101873.	2.5	8
74	Introgression of the Afila Gene into Climbing Garden Pea (Pisum sativum L.). Agronomy, 2020, 10, 1537.	3.0	7
75	Sources of Resistance to Common Bacterial Blight and Charcoal Rot Disease for the Production of Mesoamerican Common Beans in the Southern United States. Plants, 2021, 10, 998.	3.5	7
76	Parallel Sequencing of Expressed Sequence Tags from Two Complementary DNA Libraries for High and Low Phosphorus Adaptation in Common Beans. Plant Genome, 2011, 4, .	2.8	6
77	Condensed Tannin Accumulation during Seed Coat Development in Five Common Bean Genotypes. Crop Science, 2015, 55, 2826-2832.	1.8	6
78	A methyl esterase 1 (PvMES1) promotes the salicylic acid pathway and enhances Fusarium wilt resistance in common beans. Theoretical and Applied Genetics, 2021, 134, 2379-2398.	3.6	6
79	Diversity of Common Bean Landraces, Breeding Lines, and Varieties from Cuba. Crop Science, 2016, 56, 322-330.	1.8	5
80	Editorial: Food Legume Diversity and Legume Research Policies. Crop Journal, 2016, 4, 339-343.	5.2	5
81	Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing. Molecular Horticulture, 2022, 2, .	5.8	5
82	Novel Alleles for Black and Gray Seed Color Genes in Common Bean. Crop Science, 2017, 57, 1603-1610.	1.8	4
83	Genetic Diversity of Purple Passion Fruit, Passiflora edulis f. edulis, Based on Single-Nucleotide Polymorphism Markers Discovered through Genotyping by Sequencing. Diversity, 2021, 13, 144.	1.7	3
84	Genetic Diversity of Bolivian Accessions of <i>Phaseolus</i> Species Evaluated with Fluorescent Microsatellite Markers. Crop Science, 2012, 52, 2619-2627.	1.8	1
85	Agronomic evaluation of biofortified beans in Antioquia producers' farms. Revista Facultad Nacional De Agronomia Medellin, 2020, 73, 9143-9149.	0.5	1