Sergey Kravtsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8930357/publications.pdf

Version: 2024-02-01

57	1,387	20	36
papers	citations	h-index	g-index
63	63	63	1414
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Objective methods for thinning the frequency of reforecasts while meeting post-processing and model validation needs. Weather and Forecasting, 2022, , .	1.4	1
2	On Time Scales of Intrinsic Oscillations in the Climate System. Entropy, 2021, 23, 459.	2.2	О
3	Lorenz-63 Model as a Metaphor for Transient Complexity in Climate. Entropy, 2021, 23, 951.	2.2	1
4	Monopoles in a uniform zonal flow on a quasi-geostrophic -plane: effects of the Galilean non-invariance of the rotating shallow-water equations. Journal of Fluid Mechanics, 2021, 909, .	3.4	4
5	Monopoles in a zonal flow with constant shear on a quasi-geostrophic f-plane: Effects of Galilean non-invariance. Physics of Fluids, 2021, 33, 116606.	4.0	1
6	Dynamics and Predictability of Hemispheric-Scale Multidecadal Climate Variability in an Observationally Constrained Mechanistic Model. Journal of Climate, 2020, 33, 4599-4620.	3.2	5
7	Analysis of 20th century surface air temperature using linear dynamical modes. Chaos, 2020, 30, 123110.	2.5	8
8	Numerical solutions of the singular vortex problem. Physics of Fluids, 2019, 31, 066602.	4.0	11
9	Multiple climate regimes in an idealized lake–ice–atmosphere model. Climate Dynamics, 2018, 50, 655-676.	3.8	10
10	Role of Nonlinear Dynamics in Accelerated Warming of Great Lakes. , 2018, , 279-295.		4
10	Role of Nonlinear Dynamics in Accelerated Warming of Great Lakes. , 2018, , 279-295. Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	23
	Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Climate and	6.8	
11	Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Climate and Atmospheric Science, 2018, 1, . Global-scale multidecadal variability missing in state-of-the-art climate models. Npj Climate and		23
11 12	Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Climate and Atmospheric Science, 2018, 1, . Global-scale multidecadal variability missing in state-of-the-art climate models. Npj Climate and Atmospheric Science, 2018, 1, . Pronounced differences between observed and CMIP5â€simulated multidecadal climate variability in the	6.8	23
11 12 13	Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Climate and Atmospheric Science, 2018, 1, . Global-scale multidecadal variability missing in state-of-the-art climate models. Npj Climate and Atmospheric Science, 2018, 1, . Pronounced differences between observed and CMIP5â€simulated multidecadal climate variability in the twentieth century. Geophysical Research Letters, 2017, 44, 5749-5757. On semiâ€empirical decomposition of multidecadal climate variability into forced and internally	6.8	23 33 50
11 12 13	Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Climate and Atmospheric Science, 2018, 1, . Global-scale multidecadal variability missing in state-of-the-art climate models. Npj Climate and Atmospheric Science, 2018, 1, . Pronounced differences between observed and CMIP5â€simulated multidecadal climate variability in the twentieth century. Geophysical Research Letters, 2017, 44, 5749-5757. On semiâ€empirical decomposition of multidecadal climate variability into forced and internally generated components. International Journal of Climatology, 2017, 37, 4417-4433. A virtual climate library of surface temperature over North America for 1979–2015. Scientific Data,	6.8 4.0 3.5	23 33 50 19
11 12 13 14	Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Climate and Atmospheric Science, 2018, 1, . Global-scale multidecadal variability missing in state-of-the-art climate models. Npj Climate and Atmospheric Science, 2018, 1, . Pronounced differences between observed and CMIP5â€simulated multidecadal climate variability in the twentieth century. Geophysical Research Letters, 2017, 44, 5749-5757. On semiâ€empirical decomposition of multidecadal climate variability into forced and internally generated components. International Journal of Climatology, 2017, 37, 4417-4433. A virtual climate library of surface temperature over North America for 1979–2015. Scientific Data, 2017, 4, 170155. Comment on "Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and	6.8 4.0 3.5	23 33 50 19

#	Article	IF	CITATIONS
19	Comment on "Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperaturesâ€. Science, 2015, 350, 1326-1326.	12.6	10
20	Reconstructing Sea Level Pressure Variability via a Feature Tracking Approach. Journals of the Atmospheric Sciences, 2015, 72, 487-506.	1.7	4
21	Attribution of Decadal-Scale Lake-Level Trends in the Michigan-Huron System. Water (Switzerland), 2014, 6, 2278-2299.	2.7	20
22	Two contrasting views of multidecadal climate variability in the twentieth century. Geophysical Research Letters, 2014, 41, 6881-6888.	4.0	34
23	Kinematics of Eddy–Mean Flow Interaction in an Idealized Atmospheric Model. Journals of the Atmospheric Sciences, 2013, 70, 2574-2595.	1.7	8
24	Predictability Associated with Nonlinear Regimes in an Atmospheric Model. Journals of the Atmospheric Sciences, 2012, 69, 1137-1154.	1.7	4
25	Origin of Non-Gaussian Regimes and Predictability in an Atmospheric Model. Journals of the Atmospheric Sciences, 2012, 69, 2587-2599.	1.7	4
26	An empirical model of decadal ENSO variability. Climate Dynamics, 2012, 39, 2377-2391.	3.8	13
27	Atlantic Multidecadal Oscillation and Northern Hemisphere's climate variability. Climate Dynamics, 2012, 38, 929-949.	3.8	137
28	A Closer Look at Data Independence: Comment on "Lies, Damned Lies, and Statistics (in Geology)― Eos, 2011, 92, 65-65.	0.1	1
29	On the mechanisms of late 20th century seaâ€surface temperature trends over the Antarctic Circumpolar Current. Journal of Geophysical Research, 2011, 116, .	3.3	2
30	An empirical stochastic model of sea-surface temperatures and surface winds over the Southern Ocean. Ocean Science, 2011, 7, 755-770.	3.4	7
31	Signatures of Nonlinear Dynamics in an Idealized Atmospheric Model. Journals of the Atmospheric Sciences, 2011, 68, 3-12.	1.7	15
32	Stochastic Parameterization Schemes for Use in Realistic Climate Models. Journals of the Atmospheric Sciences, 2011, 68, 284-299.	1.7	16
33	Reduced models of atmospheric low-frequency variability: Parameter estimation and comparative performance. Physica D: Nonlinear Phenomena, 2010, 239, 145-166.	2.8	23
34	Decadal Variations of North Atlantic Sea Surface Temperature in Observations and CMIP3 Simulations*. Journal of Climate, 2010, 23, 4619-4636.	3.2	12
35	Connecting past and present climate variability to the water levels of Lakes Michigan and Huron. Geophysical Research Letters, 2010, 37, .	4.0	72
36	Relationship between synoptic weather disturbances and particulate matter air pollution over the United States. Journal of Geophysical Research, 2010, 115, .	3.3	16

#	Article	lF	CITATIONS
37	The Relationship between Statistically Linear and Nonlinear Feedbacks and Zonal-Mean Flow Variability in an Idealized Climate Model. Journals of the Atmospheric Sciences, 2009, 66, 353-372.	1.7	5
38	The Effects of Mesoscale Ocean–Atmosphere Coupling on the Large-Scale Ocean Circulation. Journal of Climate, 2009, 22, 4066-4082.	3.2	55
39	Quasi-periodic decadal cycles in levels of lakes Michigan and Huron. Journal of Great Lakes Research, 2009, 35, 30-35.	1.9	23
40	A mechanistic model of mid-latitude decadal climate variability. Physica D: Nonlinear Phenomena, 2008, 237, 584-599.	2.8	8
41	Multidecadal Climate Variability in Observed and Modeled Surface Temperatures*. Journal of Climate, 2008, 21, 1104-1121.	3.2	63
42	North Atlantic climate variability in coupled models and data. Nonlinear Processes in Geophysics, 2008, 15, 13-24.	1.3	5
43	Ocean Eddy Dynamics in a Coupled Ocean–Atmosphere Model*. Journal of Physical Oceanography, 2007, 37, 1103-1121.	1.7	40
44	A highly nonlinear coupled mode of decadal variability in a mid-latitude ocean–atmosphere model. Dynamics of Atmospheres and Oceans, 2007, 43, 123-150.	1.8	22
45	A new dynamical mechanism for major climate shifts. Geophysical Research Letters, 2007, 34, .	4.0	157
46	Dynamical Origin of Low-Frequency Variability in a Highly Nonlinear Midlatitude Coupled Model. Journal of Climate, 2006, 19, 6391-6408.	3.2	22
47	Multiple Regimes and Low-Frequency Oscillations in the Northern Hemisphere's Zonal-Mean Flow. Journals of the Atmospheric Sciences, 2006, 63, 840-860.	1.7	26
48	Empirical Mode Reduction in a Model of Extratropical Low-Frequency Variability. Journals of the Atmospheric Sciences, 2006, 63, 1859-1877.	1.7	46
49	Multilevel Regression Modeling of Nonlinear Processes: Derivation and Applications to Climatic Variability. Journal of Climate, 2005, 18, 4404-4424.	3.2	121
50	Bimodal Behavior in the Zonal Mean Flow of a Baroclinic \hat{l}^2 -Channel Model. Journals of the Atmospheric Sciences, 2005, 62, 1746-1769.	1.7	25
51	A Hierarchy of Data-Based ENSO Models. Journal of Climate, 2005, 18, 4425-4444.	3.2	100
52	Interdecadal Variability in a Hybrid Coupled Ocean–Atmosphere–Sea Ice Model. Journal of Physical Oceanography, 2004, 34, 1756-1775.	1.7	21
53	On the role of thermohaline advection and sea ice in glacial transitions. Journal of Geophysical Research, 2003, 108, .	3.3	3
54	Low-Frequency Variability in a Baroclinicl̂²Channel with Land–Sea Contrast*. Journals of the Atmospheric Sciences, 2003, 60, 2267-2293.	1.7	14

SERGEY KRAVTSOV

#	Article	IF	CITATIONS
55	Midlatitude ocean-atmosphere interaction in an idealized coupled model. Climate Dynamics, 2002, 19, 693-711.	3.8	15
56	Sea Ice and Climate. Part II: Model Climate Stability to Perturbations of the Hydrological Cycle. Journal of Climate, 2000, 13, 463-487.	3.2	3
57	Multiple Equilibria and Transitions in a Coupled Ocean–Atmosphere Box Model. Journal of Physical Oceanography, 1998, 28, 389-397.	1.7	O