TomáÅ; Helikar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8929991/publications.pdf

Version: 2024-02-01

59 papers

2,087 citations

20 h-index 276875 41 g-index

68 all docs 68
docs citations

68 times ranked 1698 citing authors

#	Article	IF	CITATIONS
1	Recent applications of quantitative systems pharmacology and machine learning models across diseases. Journal of Pharmacokinetics and Pharmacodynamics, 2022, 49, 19-37.	1.8	22
2	Two heads are better than one: current landscape of integrating QSP and machine learning. Journal of Pharmacokinetics and Pharmacodynamics, 2022, 49, 5-18.	1.8	26
3	Addressing <i>barriers in comprehensiveness, accessibility, reusability, interoperability and reproducibility of computational models in systems biology</i> i> Briefings in Bioinformatics, 2022, 23, .	6.5	10
4	A practical guide to mechanistic systems modeling in biology using a logic-based approach. Briefings in Bioinformatics, 2021, 22, .	6.5	19
5	Setting the basis of best practices and standards for curation and annotation of logical models in biologyâ€"highlights of the [BC]2 2019 CoLoMoTo/SysMod Workshop. Briefings in Bioinformatics, 2021, 22, 1848-1859.	6.5	25
6	The Need for Research-Grade Systems Modeling Technologies for Life Science Education. Trends in Molecular Medicine, 2021, 27, 100-103.	6.7	2
7	Teaching Metabolism in Upper-Division Undergraduate Biochemistry Courses using Online Computational Systems and Dynamical Models Improves Student Performance. CBE Life Sciences Education, 2021, 20, ar13.	2.3	14
8	Integrative network analyses of transcriptomics data reveal potential drug targets for acute radiation syndrome. Scientific Reports, 2021, 11, 5585.	3.3	4
9	SysMod: the ISCB community for data-driven computational modelling and multi-scale analysis of biological systems. Bioinformatics, 2021, 37, 3702-3706.	4.1	6
10	A multi-approach and multi-scale platform to model CD4+ T cells responding to infections. PLoS Computational Biology, 2021, 17, e1009209.	3.2	12
11	Essential role of systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2109186118.	7.1	9
12	Integrative computational approach identifies drug targets in CD4+ T-cell-mediated immune disorders. Npj Systems Biology and Applications, 2021, 7, 4.	3.0	18
13	COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Molecular Systems Biology, 2021, 17, e10387.	7.2	53
14	The simulation experiment description markup language (SED-ML): language specification for level 1 version 4. Journal of Integrative Bioinformatics, 2021, 18, 20210021.	1.5	8
15	Using concept maps to characterise cellular respiration knowledge in undergraduate students. Journal of Biological Education, 2020, 54, 33-46.	1.5	18
16	Changes in lipid profiles of epileptic mouse model. Metabolomics, 2020, 16, 106.	3.0	7
17	Differences in Blood-Derived Francisella tularensis Type B Strains from Clinical Cases of Tularemia. Microorganisms, 2020, 8, 1515.	3.6	3
18	Simulating a Computational Biological Model, Rather Than Reading, Elicits Changes in Brain Activity during Biological Reasoning. CBE Life Sciences Education, 2020, 19, ar45.	2.3	5

#	Article	IF	CITATIONS
19	Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics, 2020, 36, 4473-4482.	4.1	57
20	Aberrant energy metabolism and redox balance in seizure onset zones of epileptic patients. Journal of Proteomics, 2020, 223, 103812.	2.4	4
21	ccNetViz: a WebGL-based JavaScript library for visualization of large networks. Bioinformatics, 2020, 36, 4527-4529.	4.1	2
22	Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships. Biochemistry and Molecular Biology Education, 2020, 48, 356-368.	1,2	8
23	<scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models. Molecular Systems Biology, 2020, 16, e9110.	7.2	178
24	Modelling activities integrating construction and simulation supported explanatory and evaluative reasoning. International Journal of Science Education, 2019, 41, 1764-1786.	1.9	11
25	Student Understanding of DNA Structure–Function Relationships Improves from Using 3D Learning Modules with Dynamic 3D Printed Models. Biochemistry and Molecular Biology Education, 2019, 47, 303-317.	1.2	29
26	Changes in students' mental models from computational modeling of gene regulatory networks. International Journal of STEM Education, 2019, 6, .	5.0	10
27	Simulation of Stimulation: Cytokine Dosage and Cell Cycle Crosstalk Driving Timing-Dependent T Cell Differentiation. Frontiers in Physiology, 2018, 9, 879.	2.8	44
28	CancerDiscover: an integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data. Oncotarget, 2018, 9, 2565-2573.	1.8	10
29	A Mechanistic Computational Model Reveals That Plasticity of CD4+ T Cell Differentiation Is a Function of Cytokine Composition and Dosage. Frontiers in Physiology, 2018, 9, 878.	2.8	46
30	Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes. Frontiers in Physiology, 2018, 9, 1185.	2.8	13
31	Visualizing the Invisible: A Guide to Designing, Printing, and Incorporating Dynamic 3D Molecular Models to Teach Structure–Function Relationships. Journal of Microbiology and Biology Education, 2018, 19, .	1.0	13
32	The CoLoMoTo Interactive Notebook: Accessible and Reproducible Computational Analyses for Qualitative Biological Networks. Frontiers in Physiology, 2018, 9, 680.	2.8	67
33	Simulated Computational Model Lesson Improves Foundational Systems Thinking Skills and Conceptual Knowledge in Biology Students. BioScience, 2018, 68, 612-621.	4.9	19
34	Computational Systems Biology Approach for the Study of Rheumatoid Arthritis: From a Molecular Map to a Dynamical Model. Genomics and Computational Biology, 2017, 4, 100050.	0.7	20
35	Identification of potential tissue-specific cancer biomarkers and development of cancer versus normal genomic classifiers. Oncotarget, 2017, 8, 85692-85715.	1.8	18
36	Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics. Frontiers in Bioengineering and Biotechnology, 2016, 4, 10.	4.1	29

#	Article	IF	CITATIONS
37	Logical Modeling and Dynamical Analysis of Cellular Networks. Frontiers in Genetics, 2016, 7, 94.	2.3	216
38	Programmatic access to logical models in the Cell Collective modeling environment via a REST API. BioSystems, 2016, 139, 12-16.	2.0	3
39	SBML Level 3 package: Qualitative Models, Version 1, Release 1. Journal of Integrative Bioinformatics, 2015, 12, 691-730.	1.5	15
40	Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics, 2015, 31, 1154-1159.	4.1	98
41	Integrating Interactive Computational Modeling in Biology Curricula. PLoS Computational Biology, 2015, 11, e1004131.	3.2	27
42	The Systems Biology Markup Language (SBML) Level 3 Package: Qualitative Models, Version 1, Release 1. Journal of Integrative Bioinformatics, 2015, 12, 270.	1.5	21
43	Sensitivity analysis of biological Boolean networks using information fusion based on nonadditive set functions. BMC Systems Biology, 2014, 8, 92.	3.0	8
44	Design, Assessment, and in vivo Evaluation of a Computational Model Illustrating the Role of CAV1 in CD4+ T-lymphocytes. Frontiers in Immunology, 2014, 5, 599.	4.8	16
45	Molecular phylogeny and evolutionary dynamics of influenza A nonstructural (NS) gene. Infection, Genetics and Evolution, 2014, 22, 192-200.	2.3	11
46	Dynamics of Influenza Virus and Human Host Interactions During Infection and Replication Cycle. Bulletin of Mathematical Biology, 2013, 75, 988-1011.	1.9	26
47	SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Systems Biology, 2013, 7, 135.	3.0	145
48	A Cell Simulator Platform: The Cell Collective. Clinical Pharmacology and Therapeutics, 2013, 93, 393-395.	4.7	38
49	A Comprehensive, Multi-Scale Dynamical Model of ErbB Receptor Signal Transduction in Human Mammary Epithelial Cells. PLoS ONE, 2013, 8, e61757.	2.5	42
50	The Cell Collective: Toward an open and collaborative approach to systems biology. BMC Systems Biology, 2012, 6, 96.	3.0	199
51	Bio-Logic Builder: A Non-Technical Tool for Building Dynamical, Qualitative Models. PLoS ONE, 2012, 7, e46417.	2.5	20
52	Ergodic Sets as Cell Phenotype of Budding Yeast Cell Cycle. PLoS ONE, 2012, 7, e45780.	2.5	32
53	Boolean Modeling of Biochemical Networks. Open Bioinformatics Journal, 2011, 5, 16-25.	1.0	28
54	Decision Making in Cells. Systems Biology, 2010, , 295-336.	0.1	0

TomÃiÅi Helikar

#	Article	IF	CITATIONS
55	ChemChains: a platform for simulation and analysis of biochemical networks aimed to laboratory scientists. BMC Systems Biology, 2009, 3, 58.	3.0	79
56	Emergent decision-making in biological signal transduction networks. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1913-1918.	7.1	183
57	Discovering Cellular Respiration with Computational Modeling and Simulations. CourseSource, 0, 4, .	0.0	8
58	Discovering Prokaryotic Gene Regulation with Simulations of the trp Operon. CourseSource, 0, 5, .	0.0	2
59	Discovering Prokaryotic Gene Regulation by Building and Investigating a Computational Model of the lac Operon. CourseSource, 0, 6, .	0.0	6