Ernest Hamel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8927568/publications.pdf

Version: 2024-02-01

		172457	161849
55	3,710	29	54
papers	citations	h-index	g-index
56	56	56	3488
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin. Biochemistry, 1989, 28, 6984-6991.	2.5	428
2	Antimitotic natural products and their interactions with tubulin., 1996, 16, 207-231.		294
3	Structure-Activity Analysis of the Interaction of Curacin A, the Potent Colchicine Site Antimitotic Agent, with Tubulin and Effects of Analogs on the Growth of MCF-7 Breast Cancer Cells. Molecular Pharmacology, 1998, 53, 62-76.	2.3	275
4	A Common Pharmacophore for a Diverse Set of Colchicine Site Inhibitors Using a Structure-Based Approach. Journal of Medicinal Chemistry, 2005, 48, 6107-6116.	6.4	271
5	Evaluation of Antimitotic Agents by Quantitative Comparisons of Their Effects on the Polymerization of Purified Tubulin. Cell Biochemistry and Biophysics, 2003, 38, 1-22.	1.8	256
6	Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles. Biochemistry, 1984, 23, 4173-4184.	2.5	232
7	Synthesis and evaluation of analogs of (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene as potential cytotoxic and antimitotic agents. Journal of Medicinal Chemistry, 1992, 35, 2293-2306.	6.4	224
8	Arylthioindole Inhibitors of Tubulin Polymerization. 3. Biological Evaluation, Structureâ 'Activity Relationships and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2007, 50, 2865-2874.	6.4	177
9	Antitumor Agents. 174. 2â€~,3â€~,4â€~,5,6,7-Substituted 2-Phenyl-1,8-naphthyridin-4-ones: Their Synthesis, Cytotoxicity, and Inhibition of Tubulin Polymerization1. Journal of Medicinal Chemistry, 1997, 40, 2266-2275.	6.4	90
10	A boronic acid chalcone analog of combretastatin A-4 as a potent anti-proliferation agent. Bioorganic and Medicinal Chemistry, 2010, 18, 971-977.	3.0	88
11	Interactions of 2-Methoxyestradiol, an Endogenous Mammalian Metabolite, with Unpolymerized Tubulin and with Tubulin Polymers. Biochemistry, 1996, 35, 1304-1310.	2.5	84
12	Convergent Synthesis and Biological Evaluation of 2-Amino-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl Thiazoles as Microtubule Targeting Agents. Journal of Medicinal Chemistry, 2011, 54, 5144-5153.	6.4	79
13	Antitumor Agents. 178.â€Synthesis and Biological Evaluation of Substituted 2-Aryl-1,8-naphthyridin-4(1H)-ones as Antitumor Agents That Inhibit Tubulin Polymerization. Journal of Medicinal Chemistry, 1997, 40, 3049-3056.	6.4	77
14	Synthesis and Biological Evaluation of 2-Acyl Analogues of Paclitaxel (Taxol). Journal of Medicinal Chemistry, 1998, 41, 3715-3726.	6.4	74
15	4,5-Diaryl-1H-pyrrole-2-carboxylates as combretastatin A-4/lamellarin T hybrids: Synthesis and evaluation as anti-mitotic and cytotoxic agents. Bioorganic and Medicinal Chemistry, 2006, 14, 4627-4638.	3.0	72
16	Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4669-4673.	2.2	67
17	Convergent syntheses of the pyrrolic marine natural products lamellarin-O, lamellarin-Q, lukianol-A and some more highly oxygenated congeners. Chemical Communications, 1997, , 207-208.	4.1	65
18	Synthesis and Discovery of Water-Soluble Microtubule Targeting Agents that Bind to the Colchicine Site on Tubulin and Circumvent Pgp Mediated Resistance. Journal of Medicinal Chemistry, 2010, 53, 8116-8128.	6.4	61

#	Article	IF	CITATIONS
19	Discovery and Optimization of a Series of 2-Aryl-4-Amino-5-(3′,4′,5′-trimethoxybenzoyl)Thiazoles as Novel Anticancer Agents. Journal of Medicinal Chemistry, 2012, 55, 5433-5445.	6.4	57
20	Synthesis, Antimitotic and Antivascular Activity of $1-(3\hat{a}\in^2,4\hat{a}\in^2,5\hat{a}\in^2-\text{Trimethoxybenzoyl})-3-\text{arylamino-5-amino-1,2,4-triazoles}$. Journal of Medicinal Chemistry, 2014, 6795-6808.	567.4	52
21	Design, Synthesis, in Vitro, and in Vivo Anticancer and Antiangiogenic Activity of Novel 3-Arylaminobenzofuran Derivatives Targeting the Colchicine Site on Tubulin. Journal of Medicinal Chemistry, 2015, 58, 3209-3222.	6.4	47
22	Concise Synthesis and Biological Evaluation of 2-Aroyl-5-Amino Benzo[<i>b</i>]thiophene Derivatives As a Novel Class of Potent Antimitotic Agents. Journal of Medicinal Chemistry, 2013, 56, 9296-9309.	6.4	44
23	Pyrrolo[2′,3′:3,4]cyclohepta[1,2- <i>d</i>][1,2]oxazoles, a New Class of Antimitotic Agents Active against Multiple Malignant Cell Types. Journal of Medicinal Chemistry, 2020, 63, 12023-12042.	6.4	43
24	Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents. Bioorganic and Medicinal Chemistry, 2014, 22, 5097-5109.	3.0	40
25	Design, synthesis, and biological evaluation of water-soluble amino acid prodrug conjugates derived from combretastatin, dihydronaphthalene, and benzosuberene-based parent vascular disrupting agents. Bioorganic and Medicinal Chemistry, 2016, 24, 938-956.	3.0	37
26	A diaryl sulfide, sulfoxide, and sulfone bearing structural similarities to combretastatin A-4. European Journal of Medicinal Chemistry, 2009, 44, 2685-2688.	5.5	36
27	Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development., 2021, 225, 107860.		36
28	Colchicine Models: Synthesis and Binding to Tubulin of Tertamethoxybiphenyls. Helvetica Chimica Acta, 1988, 71, 1199-1209.	1.6	33
29	The magnesium-GTP interaction in microtubule assembly. FEBS Journal, 1994, 222, 163-172.	0.2	33
30	One-pot synthesis and biological evaluation of 2-pyrrolidinyl-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)thiazole: A unique, highly active antimicrotubule agent. European Journal of Medicinal Chemistry, 2011, 46, 6015-6024.	5.5	32
31	Insight on [1,3]thiazolo[4,5-e]isoindoles as tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 2021, 212, 113122.	5.5	30
32	Structure–Activity Relationship and in Vitro and in Vivo Evaluation of the Potent Cytotoxic Anti-microtubule Agent <i>N</i> -(4-Methoxyphenyl)- <i>N</i> ,2,6-trimethyl-6,7-dihydro-5 <i>H</i> -cyclopenta[<i>d</i>]pyrimidin-4-aminiur Chloride and Its Analogues As Antitumor Agents. Journal of Medicinal Chemistry, 2013, 56, 6829-6844.	6. 4	24
33	An amino-benzosuberene analogue that inhibits tubulin assembly and demonstrates remarkable cytotoxicity. MedChemComm, 2012, 3, 720.	3.4	23
34	Limitations in the use of tubulin polymerization assays as a screen for the identification of new antimitotic agents: The potent marine natural product curacin A as an example. Drug Development Research, 1995, 34, 110-120.	2.9	22
35	Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization. Bioorganic and Medicinal Chemistry, 2015, 23, 7497-7520.	3.0	19

Synthesis and Biological Activities of (<i>R</i>)- and (<i>S</i>)-<i>N</i>-(4-Methoxyphenyl)-<i>N</i>,2,6-trimethyl-6,7-dihydro-5<i>H</i>-cyclopenta[<i>d</i>)-(i>d</i>)-gyrimidin644aminium8 Chloride as Potent Cytotoxic Antitubulin Agents. Journal of Medicinal Chemistry, 2011, 54, 6151-6155.

#	Article	IF	CITATIONS
37	Effects of substituent pattern on the intracellular target of antiproliferative benzo[b]thiophenyl chromone derivatives. European Journal of Medicinal Chemistry, 2021, 222, 113578.	5.5	16
38	Synthesis of dihydronaphthalene analogues inspired by combretastatin A-4 and their biological evaluation as anticancer agents. MedChemComm, 2018, 9, 1649-1662.	3.4	15
39	Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo[3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple-acting angiokinase inhibition as antitumor agents. Bioorganic and Medicinal Chemistry, 2017, 25, 545-556.	3.0	13
40	A facile synthesis of diaryl pyrroles led to the discovery of potent colchicine site antimitotic agents. European Journal of Medicinal Chemistry, 2021, 214, 113229.	5.5	13
41	Diaryl disulfides and thiosulfonates as combretastatin A-4 analogues: Synthesis, cytotoxicity and antitubulin activity. Bioorganic Chemistry, 2020, 101, 104017.	4.1	12
42	Discovery of pyrrole derivatives for the treatment of glioblastoma and chronic myeloid leukemia. European Journal of Medicinal Chemistry, 2021, 221, 113532.	5.5	12
43	Structure based drug design and in vitro metabolism study: Discovery of N-(4-methylthiophenyl)-N,2-dimethyl-cyclopenta[d]pyrimidine as a potent microtubule targeting agent. Bioorganic and Medicinal Chemistry, 2018, 26, 2437-2451.	3.0	11
44	Novel pyrazolo[4,3-d]pyrimidine microtubule targeting agents (MTAs): Synthesis, structure–activity relationship, in vitro and in vivo evaluation as antitumor agents. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 127923.	2.2	10
45	Design, synthesis, and structure–activity relationships of pyrimido[4,5- b]indole-4-amines as microtubule depolymerizing agents that are effective against multidrug resistant cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3423-3430.	2.2	9
46	Synthesis and biological evaluation of structurally diverse \hat{l}_{\pm} -conformationally restricted chalcones and related analogues. MedChemComm, 2019, 10, 1445-1456.	3.4	9
47	Synthesis and Biological Evaluation of Highly Active 7-Anilino Triazolopyrimidines as Potent Antimicrotubule Agents. Pharmaceutics, 2022, 14, 1191.	4.5	7
48	Antimitotic natural products and their interactions with tubulin. Medicinal Research Reviews, 1996, 16, 207-231.	10.5	6
49	Synthesis of 14C labelled electrophilic ligands of the colchicine binding site of tubulin: Chloroacetates of demethylthiocolchicines and of N-acetylcolchinol; isothiocyanate of 9-deoxy-N-acetylcolchinol. Journal of Labelled Compounds and Radiopharmaceuticals, 1993, 33, 293-299.	1.0	5
50	Sterically induced conformational restriction: Discovery and preclinical evaluation of novel pyrrolo[3,2-d]pyrimidines as microtubule targeting agents. Bioorganic and Medicinal Chemistry, 2018, 26, 5470-5478.	3.0	5
51	The 3-D conformational shape of N-naphthyl-cyclopenta[d]pyrimidines affects their potency as microtubule targeting agents and their antitumor activity. Bioorganic and Medicinal Chemistry, 2021, 29, 115887.	3.0	5
52	S â€(4â€Methoxyphenyl)â€4â€methoxybenzenesulfonothioate as a Promising Lead Compound for the Development of a Renal Carcinoma Agent. ChemMedChem, 2020, 15, 449-458.	3.2	3
53	Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorganic Chemistry, 2021, 112, 104919.	4.1	3
54	Design, Synthesis, and Biological Evaluation of 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines as Microtubule Targeting Agents. Molecules, 2022, 27, 321.	3.8	3

#	Article	IF	CITATIONS
55	Potential of substituted quinazolines to interact with multiple targets in the treatment of cancer. Bioorganic and Medicinal Chemistry, 2021, 35, 116061.	3.0	2