Mary L Kaldunski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926421/publications.pdf

Version: 2024-02-01

236925 377865 4,170 37 25 34 citations h-index g-index papers 37 37 37 5689 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	MOET: a web-based gene set enrichment tool at the Rat Genome Database for multiontology and multispecies analyses. Genetics, 2022, 220, .	2.9	7
2	The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research, 2021, 49, D325-D334.	14.5	2,416
3	The Year of the Rat: The Rat Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Research, 2020, 48, D731-D742.	14.5	92
4	A Serum-Induced Transcriptome and Serum Cytokine Signature Obtained at Diagnosis Correlates with the Development of Early Pancreatic Ductal Adenocarcinoma Metastasis. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 680-689.	2.5	2
5	Identification of molecular signatures of cystic fibrosis disease status with plasma-based functional genomics. Physiological Genomics, 2019, 51, 27-41.	2.3	14
6	Innate immune activity as a predictor of persistent insulin secretion and association with responsiveness to CTLA4-Ig treatment in recent-onset type 1 diabetes. Diabetologia, 2018, 61, 2356-2370.	6.3	33
7	Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and \hat{l}^2 -cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS ONE, 2018, 13, e0190351.	2.5	21
8	Interleukinâ€1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset. European Journal of Immunology, 2016, 46, 1030-1046.	2.9	54
9	Intermittent neonatal hypoxia elicits the upregulation of inflammatory-related genes in adult male rats through long-lasting programming effects. Physiological Reports, 2015, 3, e12646.	1.7	5
10	Identification of a Novel Gene for Diabetic Traits in Rats, Mice, and Humans. Genetics, 2014, 198, 17-29.	2.9	44
11	Molecular Signatures Differentiate Immune States in Type 1 Diabetic Families. Diabetes, 2014, 63, 3960-3973.	0.6	55
12	Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes. Journal of Endocrinology, 2013, 216, 111-123.	2.6	25
13	Non-replication study of a genome-wide association study for hypertension and blood pressure in African Americans. BMC Medical Genetics, 2012, 13, 27.	2.1	32
14	Use of transcriptional signatures induced in lymphoid and myeloid cell lines as an inflammatory biomarker in Type 1 diabetes. Physiological Genomics, 2011, 43, 697-709.	2.3	11
15	Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. Journal of Clinical Investigation, 2011, 121, 454-454.	8.2	O
16	Identification of a Serum-Induced Transcriptional Signature Associated With Type 1 Diabetes in the BioBreeding Rat. Diabetes, 2010, 59, 2375-2385.	0.6	26
17	Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. Journal of Clinical Investigation, 2009, 119, 3597-3612.	8.2	37
18	High Perfusion Pressure Accelerates Renal Injury in Salt-Sensitive Hypertension. Journal of the American Society of Nephrology: JASN, 2008, 19, 1472-1482.	6.1	90

#	Article	IF	CITATIONS
19	Molecular networks in Dahl salt-sensitive hypertension based on transcriptome analysis of a panel of consomic rats. Physiological Genomics, 2008, 34, 54-64.	2.3	45
20	Pressureâ€induced renal injury is attenuated in norepinephrineâ€induced hypertensive rats. FASEB Journal, 2008, 22, 969.10.	0.5	0
21	Efficient transgenic rat production by a lentiviral vector. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H881-H894.	3.2	42
22	Multiple blood pressure loci on rat chromosome 13 attenuate development of hypertension in the Dahl S hypertensive rat. Physiological Genomics, 2007, 31, 228-235.	2.3	67
23	Effect of sodium delivery on superoxide and nitric oxide in the medullary thick ascending limb. American Journal of Physiology - Renal Physiology, 2006, 291, F350-F357.	2.7	62
24	Efficient transgenic rat production by a lentiviral vector. FASEB Journal, 2006, 20, A407.	0.5	0
25	Hyperaldosteronism and Hypertension. Hypertension, 2005, 45, 766-772.	2.7	78
26	Genome-Wide Scan for Linkage to Obesity-Associated Hypertension in French Canadians. Hypertension, 2005, 46, 1280-1285.	2.7	39
27	Influence of diet and genetics on hypertension and renal disease in Dahl salt-sensitive rats. Physiological Genomics, 2004, 16, 194-203.	2.3	74
28	Genomic map of cardiovascular phenotypes of hypertension in female Dahl S rats. Physiological Genomics, 2003, 15, 243-257.	2.3	91
29	Identification of Hypertension-Related QTLs in African American Sib Pairs. Hypertension, 2002, 40, 634-639.	2.7	22
30	Gender-specific correlates of leptin with hypertension-related phenotypes in African Americans. American Journal of Hypertension, 2002, 15, 989-993.	2.0	30
31	Arterial Pressure, Left Ventricular Mass, and Aldosterone in Essential Hypertension. Hypertension, 2001, 37, 845-850.	2.7	106
32	Brown Norway Chromosome 13 Confers Protection From High Salt to Consomic Dahl S Rat. Hypertension, 2001, 37, 456-461.	2.7	194
33	A Genomic-Systems Biology Map for Cardiovascular Function. Science, 2001, 294, 1723-1726.	12.6	166
34	Predictors of Target Organ Damage in Hypertensive Blacks and Whites. Hypertension, 2001, 38, 761-766.	2.7	31
35	Genetically defined risk of salt sensitivity in an intercross of Brown Norway and Dahl S rats. Physiological Genomics, 2000, 2, 107-115.	2.3	78
36	Genetic Determinants of Hypertension. Hypertension, 2000, 36, 7-13.	2.7	80

3

#	Article	IF	CITATIONS
37	Transfer of Brown Norway Rat Chromosome 13 into Dahl S Genomic Background Confers Protection from High Salt Diet. Hypertension, 2000, 36, 717-717.	2.7	1