
George W Huntley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-Motor Symptoms of Parkinson's Disease: The Neurobiology of Early Psychiatric and Cognitive Dysfunction. Neuroscientist, 2023, 29, 97-116.	3.5	23
2	Cognitive deficits and altered cholinergic innervation in young adult male mice carrying a Parkinson's disease Lrrk2G2019S knockin mutation. Experimental Neurology, 2022, 355, 114145.	4.1	6
3	Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Reports, 2021, 37, 109836.	6.4	82
4	LRRK2 mutation alters behavioral, synaptic, and nonsynaptic adaptations to acute social stress. Journal of Neurophysiology, 2020, 123, 2382-2389.	1.8	16
5	Origins of Parkinson's Disease in Brain Development: Insights From Early and Persistent Effects of LRRK2-G2019S on Striatal Circuits. Frontiers in Neuroscience, 2020, 14, 265.	2.8	11
6	Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nature Neuroscience, 2020, 23, 638-650.	14.8	98
7	Are we listening to everything the PARK genes are telling us?. Journal of Comparative Neurology, 2019, 527, 1527-1540.	1.6	13
8	Functional and behavioral consequences of Parkinson's disease-associated <i>LRRK2-</i> G2019S mutation. Biochemical Society Transactions, 2018, 46, 1697-1705.	3.4	18
9	Parkinson's Disease-Linked LRRK2-G2019S Mutation Alters Synaptic Plasticity and Promotes Resilience to Chronic Social Stress in Young Adulthood. Journal of Neuroscience, 2018, 38, 9700-9711.	3.6	51
10	Antipsychotic-induced Hdac2 transcription via NF-κB leads to synaptic and cognitive side effects. Nature Neuroscience, 2017, 20, 1247-1259.	14.8	79
11	Subcellular Distribution of HDAC1 in Neurotoxic Conditions Is Dependent on Serine Phosphorylation. Journal of Neuroscience, 2017, 37, 7547-7559.	3.6	26
12	Altered Development of Synapse Structure and Function in Striatum Caused by Parkinson's Disease-Linked LRRK2-G2019S Mutation. Journal of Neuroscience, 2016, 36, 7128-7141.	3.6	95
13	Cadherinâ€8 expression, synaptic localization, and molecular control of neuronal form in prefrontal corticostriatal circuits. Journal of Comparative Neurology, 2015, 523, 75-92.	1.6	30
14	Cadherin-Based Transsynaptic Networks in Establishing and Modifying Neural Connectivity. Current Topics in Developmental Biology, 2015, 112, 415-465.	2.2	35
15	Maturation of cortical circuits requires Semaphorin 7A. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13978-13983.	7.1	34
16	The granin VGF promotes genesis of secretory vesicles, and regulates circulating catecholamine levels and blood pressure. FASEB Journal, 2014, 28, 2120-2133.	0.5	42
17	N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus, 2014, 24, 943-962.	1.9	33
18	Early postnatal expression and localization of matrix metalloproteinasesâ€2 and â€9 during establishment of rat hippocampal synaptic circuitry. Journal of Comparative Neurology, 2014, 522, 1249-1263.	1.6	30

#	Article	IF	CITATIONS
19	CCAAT Enhancer Binding Protein l´ Plays an Essential Role in Memory Consolidation and Reconsolidation. Journal of Neuroscience, 2013, 33, 3646-3658.	3.6	32
20	Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nature Reviews Neuroscience, 2012, 13, 743-757.	10.2	229
21	Synapse adhesion: a dynamic equilibrium conferring stability and flexibility. Current Opinion in Neurobiology, 2012, 22, 397-404.	4.2	38
22	Compensatory redistribution of neuroligins and Nâ€cadherin following deletion of synaptic β1â€integrin. Journal of Comparative Neurology, 2012, 520, 2041-2052.	1.6	54
23	Synaptic loss and retention of different classic cadherins with LTPâ€associated synaptic structural remodeling in vivo. Hippocampus, 2012, 22, 17-28.	1.9	17
24	Building and remodeling synapses. Hippocampus, 2012, 22, 954-968.	1.9	31
25	Astrocyte-Neuron Lactate Transport Is Required for Long-Term Memory Formation. Cell, 2011, 144, 810-823.	28.9	1,285
26	Neuropathic pain- and glial derived neurotrophic factor-associated regulation of cadherins in spinal circuits of the dorsal horn. Pain, 2011, 152, 924-935.	4.2	22
27	Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E99-107.	7.1	133
28	Imidazoleacetic acid-ribotide induces depression of synaptic responses in hippocampus through activation of imidazoline receptors. Journal of Neurophysiology, 2011, 105, 1266-1275.	1.8	10
29	Persistence of Coordinated Long-Term Potentiation and Dendritic Spine Enlargement at Mature Hippocampal CA1 Synapses Requires N-Cadherin. Journal of Neuroscience, 2010, 30, 9984-9989.	3.6	109
30	Developmental and comparative aspects of posterior medial thalamocortical innervation of the barrel cortex in mice and rats. Journal of Comparative Neurology, 2008, 509, 239-258.	1.6	30
31	Developmental and comparative aspects of posterior medial thalamocortical innervation of the barrel cortex in mice and rats. Journal of Comparative Neurology, 2008, 509, spc1-spc1.	1.6	0
32	Developmental and comparative aspects of posterior medial thalamocortical innervation of the barrel cortex in mice and rats. Journal of Comparative Neurology, 2008, 509, spc1-spc1.	1.6	0
33	Cadherinâ€8 and Nâ€cadherin differentially regulate pre―and postsynaptic development of the hippocampal mossy fiber pathway. Hippocampus, 2008, 18, 349-363.	1.9	64
34	The Neurotrophin-Inducible Gene <i>Vgf</i> Regulates Hippocampal Function and Behavior through a Brain-Derived Neurotrophic Factor-Dependent Mechanism. Journal of Neuroscience, 2008, 28, 9857-9869.	3.6	128
35	Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19520-19525.	7.1	288
36	The extracellular protease matrix metalloproteinase-9 is activated by inhibitory avoidance learning and required for long-term memory. Learning and Memory, 2007, 14, 655-664.	1.3	89

#	Article	IF	CITATIONS
37	In Vivo Roles for Matrix Metalloproteinase-9 in Mature Hippocampal Synaptic Physiology and Plasticity. Journal of Neurophysiology, 2007, 98, 334-344.	1.8	160
38	Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory. Journal of Neuroscience, 2006, 26, 1923-1934.	3.6	434
39	Distribution and Injury-Induced Plasticity of Cadherins in Relationship to Identified Synaptic Circuitry in Adult Rat Spinal Cord. Journal of Neuroscience, 2004, 24, 8806-8817.	3.6	21
40	N-Cadherin Regulates Ingrowth and Laminar Targeting of Thalamocortical Axons. Journal of Neuroscience, 2003, 23, 2294-2305.	3.6	63
41	Altered AÎ ² Formation and Long-Term Potentiation in a Calsenilin Knock-Out. Journal of Neuroscience, 2003, 23, 9097-9106.	3.6	103
42	The Cadherin Family of Cell Adhesion Molecules: Multiple Roles in Synaptic Plasticity. Neuroscientist, 2002, 8, 221-233.	3.5	62
43	Structural Remodeling of the Synapse in Response to Physiological Activity. Cell, 2002, 108, 1-4.	28.9	66
44	Testing the role of the cell-surface molecule Thy-1 in regeneration and plasticity of connectivity in the CNS. Neuroscience, 2002, 111, 837-852.	2.3	22
45	Introduction to a special issue on dynamical aspects of cortical structure and function. Neuroscience, 2002, 111, 707-708.	2.3	2
46	Dynamic aspects of cadherin-mediated adhesion in synapse development and plasticity. Biology of the Cell, 2002, 94, 335-344.	2.0	16
47	Neural (N-) cadherin, a synaptic adhesion molecule, is induced in hippocampal mossy fiber axonal sprouts by seizure. Journal of Neuroscience Research, 2002, 69, 292-304.	2.9	36
48	Developmental patterns of cadherin expression and localization in relation to compartmentalized thalamocortical terminations in rat barrel cortex. Journal of Comparative Neurology, 2002, 453, 372-388.	1.6	45
49	Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase–deficient mice delays the onset of neurological abnormalities and extends their life span. Journal of Clinical Investigation, 2002, 109, 1183-1191.	8.2	146
50	Molecules, maps and synapse specificity. Nature Reviews Neuroscience, 2001, 2, 899-909.	10.2	154
51	Developmentally regulated expression of Thy-1 in structures of the mouse sensory-motor system. , 2000, 421, 215-233.		29
52	Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends in Cell Biology, 2000, 10, 473-482.	7.9	185
53	Increasing Numbers of Synaptic Puncta during Late-Phase LTP. Neuron, 2000, 28, 245-259.	8.1	355
54	Molecular Modification of N-Cadherin in Response to Synaptic Activity. Neuron, 2000, 25, 93-107.	8.1	301

#	Article	IF	CITATIONS
55	Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections. Journal of Comparative Neurology, 1999, 407, 453-471.	1.6	78
56	Correlation between patterns of horizontal connectivity and the extend of short-term representational plasticity in rat motor cortex. Cerebral Cortex, 1997, 7, 143-156.	2.9	150
57	Differential Subcellular Regulation of NMDAR1 Protein and mRNA in Dendrites of Dentate Gyrus Granule Cells after Perforant Path Transection. Journal of Neuroscience, 1997, 17, 2006-2017.	3.6	99
58	Differential Effects of Abnormal Tactile Experience on Shaping Representation Patterns in Developing and Adult Motor Cortex. Journal of Neuroscience, 1997, 17, 9220-9232.	3.6	45
59	Quantitative localization of NMDAR1 receptor subunit immunoreactivity in inferotemporal and prefrontal association cortices of monkey and human. Brain Research, 1997, 749, 245-262.	2.2	42
60	Immunohistochemical localization of the neuron-specific glutamate transporter EAAC1 (EAAT3) in rat brain and spinal cord revealed by a novel monoclonal antibody. Brain Research, 1997, 773, 139-148.	2.2	96
61	â– REVIEW : Glutamate Receptors: Emerging Links Between Subunit Proteins and Specific Excitatory Circuits in Primate Hippocampus and Neocortex. Neuroscientist, 1996, 2, 272-283.	3.5	11
62	Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 689-693.	7.1	673
63	Immunocytochemical localization of non-NMDA ionotropic excitatory amino acid receptor subunits in human neocortex. Brain Research, 1995, 671, 175-180.	2.2	22
64	Excitatory Amino Acids and Neurotoxicity in the Human Neocortex. Advances in Behavioral Biology, 1995, , 79-99.	0.2	3
65	Neuron-specific human glutamate transporter: molecular cloning, characterization and expression in human brain. Brain Research, 1994, 662, 245-250.	2.2	56
66	Microzonal decreases in the immunostaining for non-NMDA ionotropic excitatory amino acid receptor subunits GluR 2/3 and GluR 5/6/7 in the human epileptogenic neocortex. Brain Research, 1994, 657, 150-158.	2.2	43
67	Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: organizational features related to cortical circuitry, function and disease. Trends in Neurosciences, 1994, 17, 536-543.	8.6	124
68	Localisation of mRNA encoding the protein precursor of galanin in the monkey hypothalamus and basal forebrain. Journal of Comparative Neurology, 1993, 328, 203-212.	1.6	19
69	Organization and quantitative analysis of kainate receptor subunit GluR5-7 immunoreactivity in monkey hippocampus. Brain Research, 1993, 624, 347-353.	2.2	50
70	Heterogeneous distribution of D1, D2 and D5 receptor mRNAs in monkey striatum. Brain Research, 1993, 616, 242-250.	2.2	62
71	Localization of multiple dopamine receptor subtype mRNAs in human and monkey motor cortex and striatum. Molecular Brain Research, 1992, 15, 181-188.	2.3	95
72	Localization of preprogalanin mRNA in the monkey hippocampal formation. Neuroscience Letters, 1992, 146, 171-175.	2.1	6

#	Article	IF	CITATIONS
73	Developmental expression of brain derived neurotrophic factor mRNA by neurons of fetal and adult monkey prefrontal cortex. Developmental Brain Research, 1992, 70, 53-63.	1.7	68
74	The emergence of architectonic field structure and areal borders in developing monkey sensorimotor cortex. Neuroscience, 1991, 44, 287-310.	2.3	58
75	Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. Journal of Neurophysiology, 1991, 66, 390-413.	1.8	346
76	Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins. Journal of Neurocytology, 1990, 19, 200-212.	1.5	91
77	GABAA receptor immunoreactivity in adult and developing monkey sensory-motor cortex. Experimental Brain Research, 1990, 82, 519-535.	1.5	44
78	Tachykinin immunoreactivity in terminals of trigeminal afferent fibers in adult and fetal monkey thalamus. Experimental Brain Research, 1989, 78, 479-88.	1.5	11
79	Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex. Developmental Brain Research, 1988, 43, 69-96.	1.7	80
80	A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer's disease. Brain Research, 1987, 416, 331-336.	2.2	164