Andrzej Lewenstam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8925974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnesium. Clinica Chimica Acta, 2000, 294, 1-26.	1.1	1,169
2	Potentiometric Ion Sensors. Chemical Reviews, 2008, 108, 329-351.	47.7	813
3	All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Analytical Chemistry, 1992, 64, 2496-2501.	6.5	402
4	Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. Journal of Electroanalytical Chemistry, 2000, 489, 17-27.	3.8	375
5	Potentiometric Ion Sensors Based on Conducting Polymers. Electroanalysis, 2003, 15, 366-374.	2.9	258
6	Approved IFCC Recommendation on Reporting Results for Blood Glucose (Abbreviated). Clinical Chemistry, 2005, 51, 1573-1576.	3.2	189
7	Single-piece all-solid-state ion-selective electrode. Analytical Chemistry, 1995, 67, 3819-3823.	6.5	173
8	All solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid internal contact. Analyst, The, 1994, 119, 1985.	3.5	165
9	Numerical Solution of the Coupled Nernstâ^Planck and Poisson Equations for Liquid Junction and Ion Selective Membrane Potentials. Journal of Physical Chemistry B, 2003, 107, 2443-2452.	2.6	149
10	Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 2002, 82, 7-13.	7.8	138
11	Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 2004, 97, 182-189.	7.8	116
12	Ion sensors: current limits and new trends. Analytica Chimica Acta, 1999, 393, 11-18.	5.4	114
13	Approved IFCC recommendation on reporting results for blood glucose: International Federation of Clinical Chemistry and Laboratory Medicine Scientific Division, Working Group on Selective Electrodes and Point-of-Care Testing (IFCC-SD-WG-SEPOCT). Clinical Chemistry and Laboratory Medicine, 2006, 44, 1486-90.	2.3	113
14	Mechanism of ionic and redox sensitivity of p-type conducting polymers. Journal of Electroanalytical Chemistry, 1994, 368, 33-41.	3.8	112
15	Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes. Journal of Electroanalytical Chemistry, 2009, 633, 246-252.	3.8	112
16	Conducting polymer-based ion-selective electrodes. Analytica Chimica Acta, 1996, 322, 141-149.	5.4	108
17	Application of Nernst–Planck and Poisson equations for interpretation of liquid-junction and membrane potentials in real-time and space domains. Electrochemistry Communications, 2001, 3, 107-112.	4.7	108
18	Mechanism of ionic and redox sensitivity of p-type conducting polymers. Journal of Electroanalytical Chemistry, 1994, 368, 23-31.	3.8	105

#	Article	IF	CITATIONS
19	All solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact. Analyst, The, 1994, 119, 2417.	3.5	102
20	IFCC recommendation on reporting results for blood glucose. Clinica Chimica Acta, 2001, 307, 205-209.	1.1	98
21	Kinetics of electron transfer between Fe(CN)63â^'/4â^' and poly(3,4-ethylenedioxythiophene) studied by electrochemical impedance spectroscopy. Electrochimica Acta, 2002, 47, 2245-2251.	5.2	88
22	Model for treatment of selectivity coefficients for solid-state ion-selective electrodes. Analytical Chemistry, 1981, 53, 1401-1405.	6.5	86
23	Routines and Challenges in Clinical Application of Electrochemical Ionâ€ S ensors. Electroanalysis, 2014, 26, 1171-1181.	2.9	85
24	Application of ion-selective electrodes in clinical analysis. Electroanalysis, 1991, 3, 727-734.	2.9	81
25	A polypyrrole-based amperometric ammonia sensor. Talanta, 1996, 43, 125-134.	5.5	81
26	Plasticizer-free all-solid-state potassium-selective electrode based on poly(3-octylthiophene) and valinomycin. Analytica Chimica Acta, 1999, 385, 195-202.	5.4	81
27	Development of miniature all-solid-state potentiometric sensing system. Sensors and Actuators B: Chemical, 2010, 146, 199-205.	7.8	80
28	Factors Affecting the Potentiometric Response of All-Solid-State Solvent Polymeric Membrane Calcium-Selective Electrode for Low-Level Measurements. Analytical Chemistry, 2004, 76, 6410-6418.	6.5	78
29	Recommendations for Measurement of and Conventions for Reporting Sodium and Potassium by Ion-Selective Electrodes in Undiluted Serum, Plasma or Whole Blood. Clinical Chemistry and Laboratory Medicine, 2000, 38, 1065-1071.	2.3	75
30	All-Solid-State Potentiometric Sensors for Potassium and Sodium Based on Poly(pyrrole) Solid Contact. Microchemical Journal, 1997, 57, 59-64.	4.5	71
31	Use of Ion-Selective Electrodes for Blood-Electrolyte Analysis. Recommendations for Nomenclature, Definitions and Conventions. Clinical Chemistry and Laboratory Medicine, 2000, 38, 363-70.	2.3	69
32	Anionic responses of electrochemically synthesized polypyrrole films. Talanta, 1992, 39, 617-620.	5.5	66
33	Comparison of Multiâ€walled Carbon Nanotubes and Poly(3â€octylthiophene) as Ionâ€ŧoâ€Electron Transducers in Allâ€Solidâ€State Potassium Ionâ€Selective Electrodes. Electroanalysis, 2011, 23, 1352-1358.	2.9	63
34	Modeling Potentiometric Sensitivity of Conducting Polymers. Analytical Chemistry, 1997, 69, 4060-4064.	6.5	60
35	Junction-less reference electrode for potentiometric measurements obtained by buffering pH in a conducting polymer matrix. Analyst, The, 2005, 130, 637.	3.5	60
36	Solidâ€Contact Reference Electrodes Based on Lipophilic Salts. Electroanalysis, 2009, 21, 1955-1960.	2.9	60

#	Article	IF	CITATIONS
37	Time-Dependent Phenomena in the Potential Response of Ion-selective Electrodes Treated by the Nernstâ^'Planckâ^'Poisson Model. 1. Intramembrane Processes and Selectivity. Analytical Chemistry, 2006, 78, 6783-6791.	6.5	58
38	Characterization of a single-piece all-solid-state lithium-selective electrode based on soluble conducting polyaniline. Analytica Chimica Acta, 1999, 385, 163-173.	5.4	56
39	Equilibrium potential of potentiometric ion sensors under steady-state current by using current-reversal chronopotentiometry. Journal of Electroanalytical Chemistry, 2001, 509, 27-30.	3.8	55
40	Interpretation of selectivity coefficients of solid-state ion-selective electrodes by means of the diffusion-layer model. Talanta, 1977, 24, 171-175.	5.5	54
41	Fully automated potentiometric determination of ionized magnesium in blood serum. Analytica Chimica Acta, 1990, 236, 331-335.	5.4	54
42	Response mechanism of potentiometric Ag+ sensor based on poly(3,4-ethylenedioxythiophene) doped with silver hexabromocarborane. Journal of Electroanalytical Chemistry, 2006, 593, 219-226.	3.8	54
43	Diffusion-layer model for copper solid-state chalcocite membrane electrode; sensitivity to copper(II) ions. Talanta, 1976, 23, 661-665.	5.5	51
44	Ionic Liquidâ€Based, Liquidâ€Junctionâ€Free Reference Electrode. Electroanalysis, 2011, 23, 1881-1890.	2.9	51
45	Response mechanism of solid-state ion-selective electrodes in the presence of interfering ions. Analytical Chemistry, 1987, 59, 1539-1544.	6.5	50
46	Selectivity of Lithium Electrodes:Â Correlation with Ionâ^'Ionophore Complex Stability Constants and with Interfacial Exchange Current Densities. Analytical Chemistry, 2002, 74, 518-527.	6.5	50
47	Potentiometric sensors based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated calix[4]arene and calix[4]resorcarenes. Journal of Solid State Electrochemistry, 2005, 9, 312-319.	2.5	49
48	Obtaining Nernstian Response of a Ca ²⁺ -Selective Electrode in a Broad Concentration Range by Tuned Galvanostatic Polarization. Analytical Chemistry, 2008, 80, 9181-9187.	6.5	48
49	Electrochemical behaviour of polypyrrole film polymerized in indigo carmine solution. Electrochimica Acta, 1994, 39, 755-762.	5.2	46
50	Calcium ion-selective electrodes under galvanostatic current control. Sensors and Actuators B: Chemical, 2005, 108, 836-839.	7.8	46
51	Flow injection amperometric detection of ammonia using a polypyrrole-modified electrode and its application in urea and creatinine biosensors. Electroanalysis, 1996, 8, 233-243.	2.9	45
52	EIS simulations for ion-selective site-based membranes by a numerical solution of the coupled Nernst–Planck–Poisson equations. Electrochemistry Communications, 2006, 8, 416-420.	4.7	44
53	An analytical quality solid-state composite reference electrode. Analyst, The, 2013, 138, 5216.	3.5	44
54	Interferences in a polypyrrole-based amperometric ammonia sensor. Talanta, 2000, 52, 269-275.	5.5	43

#	Article	IF	CITATIONS
55	All-solid-state chloride sensors based on electronically conducting, semiconducting and insulating polymer membranes. Sensors and Actuators B: Chemical, 2007, 127, 545-553.	7.8	43
56	Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Analytical Methods, 2010, 2, 1490.	2.7	43
57	Potentiometric selectivity of p-doped polymer films. Analytica Chimica Acta, 2000, 406, 159-169.	5.4	42
58	Study of polypyrrole film as redox electrode. Electroanalysis, 1993, 5, 261-263.	2.9	41
59	Potentiometric response of poly(3-octylthiophene), poly(3-methylthiophene) and polythiophene in aqueous solutions. Talanta, 1993, 40, 1437-1444.	5.5	41
60	Bifunctionality of chemical sensors based on the conducting polymer polypyrrole. Talanta, 1994, 41, 323-325.	5.5	41
61	All-Solid-State Chloride-Selective Electrode Based on Poly(3-octylthiophene) and Tridodecylmethylammonium Chloride. Electroanalysis, 1999, 11, 821-824.	2.9	40
62	Polypyrrole–calcion film as a membrane and solid-contact in an indicator electrode for potentiometric titrations. Talanta, 2000, 52, 319-328.	5.5	40
63	lon-selective electrode for measuring low Ca2+ concentrations in the presence of high K+, Na+ and Mg2+ background. Analytical and Bioanalytical Chemistry, 2006, 385, 1477-1482.	3.7	40
64	Time-Dependent Phenomena in the Potential Response of Ion-Selective Electrodes Treated by the Nernstâ^'Planckâ^'Poisson Model. Part 2: Transmembrane Processes and Detection Limit. Analytical Chemistry, 2009, 81, 5016-5022.	6.5	39
65	Solid-Contact Ion-Selective Electrodes with Highly Selective Thioamide Derivatives of <i>p</i> - <i>tert</i> -Butylcalix[4]arene for the Determination of Lead(II) in Environmental Samples. Analytical Chemistry, 2013, 85, 1555-1561.	6.5	39
66	IFCC Recommended Reference Method for the Determination of the Substance Concentration of Ionized Calcium in Undiluted Serum, Plasma or Whole Blood. Clinical Chemistry and Laboratory Medicine, 2000, 38, 1301-14.	2.3	38
67	Behaviour of iodide-selective electrodes at low concentrations of iodide. Analytica Chimica Acta, 1979, 107, 121-128.	5.4	36
68	Evaluation of a new solid-state reference electrode junction material for ion-selective electrodes. Electroanalysis, 1994, 6, 962-971.	2.9	36
69	Contribution of the Diffusion Potential to the Membrane Potential and to the Ion-Selective Electrode Response. Electroanalysis, 1999, 11, 793-798.	2.9	36
70	Impedance spectroscopic study on single-piece all-solid-state calcium-selective electrode based on polyaniline. Analyst, The, 1996, 121, 1823.	3.5	35
71	Study on soluble polypyrrole as a component in all-solid-state ion-sensors. Electrochimica Acta, 1998, 43, 3503-3509.	5.2	35
72	Comparison of different approaches to the description of the detection limit of ion-selective electrodes. Electrochimica Acta, 2010, 55, 6836-6848.	5.2	35

Andrzej Lewenstam

#	Article	IF	CITATIONS
73	Solid-contact ion-selective electrodes for aromatic cations based on π-coordinating soft carriers. Talanta, 2002, 58, 341-349.	5.5	34
74	Small-volume radial flow cell for all-solid-state ion-selective electrodes. Talanta, 2004, 62, 57-63.	5.5	34
75	<i>In Situ</i> Potentiometry and Ellipsometry: A Promising Tool to Study Biofouling of Potentiometric Sensors. Analytical Chemistry, 2016, 88, 3009-3014.	6.5	34
76	Anionic interferences with copper ion-selective electrodes chloride and bromide interferences. Talanta, 1985, 32, 531-537.	5.5	33
77	Electrochemical deposition and properties of polypyrrole films doped with calcion ligands. Analytica Chimica Acta, 1999, 395, 65-75.	5.4	33
78	All-Solid-State Ag+-ISE Based on [2.2.2]p,p,p-Cyclophane. Electroanalysis, 2001, 13, 723-726.	2.9	33
79	Tuned galvanostatic polarization of solid-state lead-selective electrodes for lowering of the detection limit. Analytica Chimica Acta, 2011, 707, 1-6.	5.4	33
80	Determination of Lead(II) in Groundwater Using Solidâ€State Lead(II) Selective Electrodes by Tuned Galvanostatic Polarization. Electroanalysis, 2013, 25, 123-131.	2.9	33
81	Conducting polymer films as model biological membranes. Electrochimica Acta, 2006, 51, 2173-2181.	5.2	32
82	The Influence of the Conditioning Procedure on Potentiometric Characteristics of Solid Contact Calcium-Selective Electrodes in Nanomolar Concentration Solutions. Electroanalysis, 2006, 18, 2232-2242.	2.9	32
83	Metallic and non-metallic redox response of conducting polymers. Journal of Electroanalytical Chemistry, 1997, 430, 243-252.	3.8	31
84	Observed redox interferences of poly(pyrrole)-based perchlorate-selective electrodes. Electroanalysis, 1994, 6, 604-605.	2.9	30
85	Soluble semiconducting poly(3-octylthiophene) as a solid-contact material in all-solid-state chloride sensors. Sensors and Actuators B: Chemical, 2008, 134, 878-886.	7.8	30
86	IFCC Guideline for sampling, measuring and reporting ionized magnesium in plasma. Clinical Chemistry and Laboratory Medicine, 2008, 46, 21-6.	2.3	30
87	Non-equilibrium potentiometry—the very essence. Journal of Solid State Electrochemistry, 2011, 15, 15-22.	2.5	30
88	Recovery of nanomolar detection limit of solid-contact lead (II)-selective electrodes by electrode conditioning. Journal of Solid State Electrochemistry, 2012, 16, 2983-2991.	2.5	30
89	Observations on the behaviour of some trifluoroacetophenone derivatives as neutral carriers for carbonate ion-selective electrodes. Analyst, The, 1996, 121, 133-138.	3.5	29
90	Computer simulations of electrodiffusion problems based on Nernst–Planck and Poisson equations. Computational Materials Science, 2012, 63, 75-90.	3.0	29

#	Article	IF	CITATIONS
91	All-Solid-State Reference Electrode with Heterogeneous Membrane. Analytical Chemistry, 2017, 89, 1068-1072.	6.5	28
92	Modeling of Divalent/Monovalent Ion Selectivity of Ion-Exchanger-Based Solvent Polymeric Membranes Doped with Coexchanger. Analytical Chemistry, 2000, 72, 4965-4972.	6.5	26
93	Potentiometric Performance and Interfacial Kinetics of Neutral Ionophore Based ISE Membranes in Interfering Ion Solutions Before and After Contact with Primary Ions. Electroanalysis, 2001, 13, 876-881.	2.9	26
94	Effect of some chelating ligands on the potential response of the chalcocite copper ion-selective electrode. Analytica Chimica Acta, 1984, 158, 343-355.	5.4	25
95	Improvement of potentiometric selectivity of ion-exchanger based membranes doped with co-exchanger: Origin of the effect. Sensors and Actuators B: Chemical, 1998, 48, 344-350.	7.8	25
96	Conventional and Solid-Contact Lithium-Selective Electrodes Based on Tris[(N,N-Dicyclohexylamide) Neutral Ionophore. Electroanalysis, 2002, 14, 551-555.	2.9	25
97	Electrochemical Behaviour of Poly(benzopyrene) Films Doped with Eriochrome Black T as a Pb ²⁺ â€Sensitive Sensors. Electroanalysis, 2010, 22, 2794-2800.	2.9	25
98	A study on lowering the detection limit with solid-state lead-selective electrodes. Talanta, 2010, 83, 436-440.	5.5	25
99	Impedance study of the ion-to-electron transduction process for carbon cloth as solid-contact material in potentiometric ion sensors. Electrochimica Acta, 2011, 56, 10683-10687.	5.2	25
100	Silver Ion-Selective Electrodes Based on π-Coordinating Ionophores Without Heteroatoms. Electroanalysis, 2002, 14, 1353-1357.	2.9	24
101	All-Solid-State Chloride Sensors with Poly(3-Octylthiopene) Matrix and Trihexadecylmethylammonium Chlorides as an Ion Exchanger Salt. Electroanalysis, 2004, 16, 379-385.	2.9	24
102	Determination of the leaching of polymeric ion-selective membrane components by stripping voltammetry. Talanta, 2010, 81, 1003-1009.	5.5	24
103	Carbonate ion-selective electrode with reduced interference from salicylate. Biosensors and Bioelectronics, 2003, 18, 245-253.	10.1	23
104	Influence of anionic additive on Hg2+ interference on Ag+-ISEs based on [2.2.2]p,p,p-cyclophane as neutral carrier. Talanta, 2004, 63, 135-138.	5.5	23
105	Multicalibrational procedure for more reliable analyses of ions at low analyte concentrations. Electrochimica Acta, 2014, 140, 27-32.	5.2	23
106	Analytical quality solid-state composite reference electrode manufactured by injection moulding. Journal of Solid State Electrochemistry, 2014, 18, 607-612.	2.5	23
107	Neutral-Carrier Ion-Selective Electrodes Assessed by the Nernst–Planck–Poisson Model. Analytical Chemistry, 2015, 87, 8665-8672.	6.5	23
108	Calibration free solid contact electrodes with two PVC based membranes. Sensors and Actuators B: Chemical, 2018, 274, 268-273.	7.8	23

#	Article	IF	CITATIONS
109	Influence of morphology and topography on potentiometric response of magnesium and calcium sensitive PEDOT films doped with adenosine triphosphate (ATP). Analytica Chimica Acta, 2006, 555, 118-127.	5.4	22
110	Carbonate ion selective electrodes with trifluoroacetophenone derivatives in potentiometric clinical analyser. Talanta, 1997, 44, 1641-1647.	5.5	21
111	Recommendation for measuring and reporting chloride by ISEs in undiluted serum, plasma or blood: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): IFCC Scientific Division, Committee on Point of Care Testing and Working Group on Selective Electrodes. Clinical Chemistry and Laboratory Medicine. 2006. 44. 346-52.	2.3	21
112	New polyacrylate-based lead(II) ion-selective electrodes. Mikrochimica Acta, 2009, 164, 293-297.	5.0	21
113	Electrochemical Impedance Spectroscopy (EIS) of ion sensors. Journal of Electroanalytical Chemistry, 2011, 662, 143-149.	3.8	21
114	Multielectrode potentiometry in a one-drop sample. Electrochemistry Communications, 2013, 34, 181-184.	4.7	21
115	Solid contact reference electrode with a PVC-based composite electroactive element fabricated by 3D printing. Electrochemistry Communications, 2019, 109, 106613.	4.7	21
116	Electrodissolution of synthetic covellite in hydrochloric acid. Journal of Applied Electrochemistry, 1982, 12, 369-376.	2.9	20
117	Nonclassical Potentiometric Indicator Electrodes with Dual Sensitivity. Electroanalysis, 1999, 11, 735-743.	2.9	20
118	Biomimetic membranes based on molecularly imprinted conducting polymers as a sensing element for determination of taurine. Electrochimica Acta, 2016, 188, 537-544.	5.2	20
119	Reference Electrodes with Polymer-Based Membranes—Comprehensive Performance Characteristics. Membranes, 2019, 9, 161.	3.0	20
120	Elimination of interferences in flow-injection amperometric determination of glucose in blood serum using immobilized glucose oxidase. Electroanalysis, 1990, 2, 607-615.	2.9	19
121	Design and pitfalls of ion selective electrodes. Scandinavian Journal of Clinical and Laboratory Investigation, 1994, 54, 11-19.	1.2	18
122	Determination of Na+, K+, Ca2+, and Clâ^ lons in Wood Pulp Suspension Using Ion-Selective Electrodes. Electroanalysis, 2001, 13, 1119-1124.	2.9	18
123	Nernstâ€Planckâ€Poisson Model for the Description of Behaviour of Solid ontact Ion‧elective Electrodes at Low Analyte Concentration. Electroanalysis, 2013, 25, 133-140.	2.9	18
124	Conducting polymers in modelling transient potential of biological membranes. Bioelectrochemistry, 2007, 71, 66-74.	4.6	17
125	Ion-selective electrode control based on coulometrically determined stability constants of biologically important calcium and magnesium complexes. Analytica Chimica Acta, 1993, 273, 493-497.	5.4	16
126	Chapter 1 Clinical analysis of blood gases and electrolytes by ion-selective sensors. Comprehensive Analytical Chemistry, 2007, , 5-24.	1.3	16

Andrzej Lewenstam

#	Article	IF	CITATIONS
127	Conducting polymers - mechanisms of cationic sensitivity and the methods of inducing thereof. Electrochimica Acta, 2014, 133, 316-324.	5.2	16
128	Multielectrode Bisensor System for Time-Resolved Monitoring of Ion Transport Across an Epithelial Cell Layer. Analytical Chemistry, 2014, 86, 390-394.	6.5	16
129	All-solid-state electrochemical platform for potentiometric measurements. Sensors and Actuators B: Chemical, 2015, 207, 895-899.	7.8	16
130	Elimination of ionic interferences in the determination of sulphates in water using the lead-sensitive ion-selective electrode. Analyst, The, 1976, 101, 939.	3.5	15
131	Variability of selectivity coefficients of solid-state ion-selective electrodes. Talanta, 1982, 29, 671-674.	5.5	15
132	Ionized and total magnesium level in blood serum and plasma of healthy and III adults. Electroanalysis, 1993, 5, 713-717.	2.9	15
133	Magnesium and Calcium-Dependent Membrane Potential of Poly(Pyrrole) Films Doped with Adenosine Triphosphate. Mikrochimica Acta, 2003, 143, 177-185.	5.0	15
134	Direct Potentiometric Determination of Hydrogen Carbonate in Mineral Waters. Electroanalysis, 2017, 29, 140-145.	2.9	15
135	Electrochemical properties of polypyrrole films polymerized in the presence of Methylene Blue. Synthetic Metals, 1994, 62, 117-123.	3.9	14
136	The Evaluation of Analytical Performance of the Precision G Point-of-Care Glucometer. Clinical Chemistry and Laboratory Medicine, 2001, 39, 1283-6.	2.3	14
137	Guidelines for sampling, measuring and reporting ionized magnesium in undiluted serum, plasma or blood: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): IFCC Scientific Division, Committee on Point of Care Testing. Clinical Chemistry and Laboratory Medicine, 2005, 43, 564-9.	2.3	14
138	A Breakthrough Application of a Cross-Linked Polystyrene Anion-Exchange Membrane for a Hydrogencarbonate Ion-Selective Electrode. Sensors, 2019, 19, 1268.	3.8	14
139	Effective and Apparent Diffusion Coefficients of Chloride Ions and Chloride Binding Kinetics Parameters in Mortars: Non-Stationary Diffusion–Reaction Model and the Inverse Problem. Materials, 2020, 13, 5522.	2.9	14
140	Characterization, Standardization and Experiences with Kone Ise for Mg. Scandinavian Journal of Clinical and Laboratory Investigation, 1994, 54, 37-43.	1.2	13
141	Low cost, calibration-free sensors for in situ determination of natural water pollution. , 2010, , .		13
142	Selectivity coefficients of ion-selective magnesium electrodes used for simultaneous determination of magnesium and calcium ions. Talanta, 2011, 87, 295-301.	5.5	13
143	The mechanism of the potential response of bromide-selective electrodes based on mercury salts. Analytica Chimica Acta, 1979, 110, 197-202.	5.4	12
144	Improved selectivity and detection limit of the carbonate-selective electrode. Analytical and Bioanalytical Chemistry, 2003, 376, 524-526.	3.7	12

#	Article	IF	CITATIONS
145	Side effects in measurements of selectivity coefficients of solid state ion selective electrodes. Mikrochimica Acta, 1988, 96, 119-129.	5.0	11
146	Potentiometric method for the determination of calcium in blood serum. Analytica Chimica Acta, 1990, 233, 269-273.	5.4	11
147	Enzymatic flow-injection determination of urea in blood serum using potentiometric gas sensor with internal nonactin based ISE. Talanta, 1994, 41, 1229-1236.	5.5	11
148	Galvanic cell without liquid junction for potentiometric determination of copper. Analytica Chimica Acta, 2007, 594, 204-210.	5.4	11
149	Multi-electrode system for measurement of transmembrane ion-fluxes through living epithelial cells. Bioelectrochemistry, 2017, 117, 65-73.	4.6	11
150	New ISE-Based Apparatus for Na+, K+, Clâ^', pH and Transepithelial Potential Difference Real-Time Simultaneous Measurements of Ion Transport across Epithelial Cells Monolayer–Advantages and Pitfalls. Sensors, 2019, 19, 1881.	3.8	11
151	Design and pitfalls of ion selective electrodes. Scandinavian Journal of Clinical and Laboratory Investigation, 1994, 54, 11-19.	1.2	11
152	Lactate solid-state biosensor with multilayer of electrodeposited polymers for flow-injection clinical analysis. Biosensors and Bioelectronics, 1996, 11, 1155-1165.	10.1	10
153	Electric potential measured, concentration reported: How to get mmols from mV. Scandinavian Journal of Clinical and Laboratory Investigation, 1996, 56, 135-139.	1.2	10
154	Sensitivity and Selectivity of Ion-Selective Electrodes Interpreted Using the Nernst-Planck-Poisson Model. Analytical Chemistry, 2018, 90, 9644-9649.	6.5	10
155	Characterization, Standardization and Experiences with Kone Ise for Mg. Scandinavian Journal of Clinical and Laboratory Investigation, 1994, 54, 37-43.	1.2	10
156	Is Analytical Chemistry an autonomous field of science?. Fresenius Zeitschrift Für Analytische Chemie, 1987, 326, 308-313.	0.8	9
157	Analytical chemistry; the science of many models. Fresenius' Journal of Analytical Chemistry, 1990, 338, 225-233.	1.5	9
158	Sensors and signals. Analytical Proceedings, 1991, 28, 102.	0.4	9
159	Coupled Redox and pH Potentiometric Responses of Electrodes Coated with Polypyrrole. Analytical Letters, 2000, 33, 1339-1360.	1.8	9
160	IFCC Reference Measurement Procedure for Substance Concentration Determination of Total Carbon Dioxide in Blood, Plasma or Serum. Clinical Chemistry and Laboratory Medicine, 2001, 39, 283-8.	2.3	9
161	Novel Strategy for Finding the Optimal Parameters of Ion Selective Electrodes. ECS Transactions, 2011, 33, 19-29.	0.5	9
162	A miniaturized and integrated galvanic cell for the potentiometric measurement of ions in biological liquids. Journal of Solid State Electrochemistry, 2009, 13, 149-155.	2.5	8

#	Article	IF	CITATIONS
163	Precipitation of Inorganic Salts in Mitochondrial Matrix. Membranes, 2020, 10, 81.	3.0	8
164	Measurement of Multi Ion Transport through Human Bronchial Epithelial Cell Line Provides an Insight into the Mechanism of Defective Water Transport in Cystic Fibrosis. Membranes, 2020, 10, 43.	3.0	8
165	Optimization of a Reference Electrode with Constrained Liquid Junction for the Measurements of lons. Electroanalysis, 1999, 11, 632-636.	2.9	7
166	Ion-selective electrodes in potentiometric titrations; a new method for processing and evaluating titration data. Analytica Chimica Acta, 2015, 888, 36-43.	5.4	7
167	Modeling of Electrodiffusion Processes from Nano to Macro Scale. Journal of the Electrochemical Society, 2017, 164, E3559-E3568.	2.9	7
168	Studies of quaternary ammonium ion interference on potassium ion-selective electrodes. Fresenius' Journal of Analytical Chemistry, 1993, 346, 577-579.	1.5	6
169	Biomimetic study ofÂtheÂCa2+-Mg2+ andÂK+-Li+ antagonism onÂbiologically active sites: new methodology toÂstudy potential dependent ion exchange. Magnesium Research, 2009, 22, 10-20.	0.5	6
170	Biomimetic membranes made of conducting polymers doped with adenosine diphosphate (ADP). Electrochimica Acta, 2012, 77, 23-28.	5.2	6
171	Breakthrough in Modeling of Electrodiffusion Processes: Continuation and Extensions of the Classical Work of Richard Buck. ECS Transactions, 2014, 61, 21-30.	0.5	6
172	The study of titration conditions in the aluminium and beryllium-fluoride systems. Mikrochimica Acta, 1985, 87, 253-264.	5.0	5
173	Modeling Non Equilibrium Potentiometry to Understand and Control Selectivity and Detection Limit. ECS Transactions, 2009, 19, 219-224.	0.5	5
174	Single-point titration of metal ions and ligands by measuring change in pH. Talanta, 1986, 33, 739-742.	5.5	4
175	Diffusion Transport in Electrochemical Systems: A New Approach to Determining of the Membrane Potential at Steady State. Defect and Diffusion Forum, 0, 283-286, 487-493.	0.4	4
176	Electrochemical Properties of the Poly(3,4â€ethylenedioxythiophene) Doped with Taurine Ligands. Electroanalysis, 2013, 25, 195-203.	2.9	4
177	Direct Solid Contact in Reference Electrodes. , 2013, , 279-288.		4
178	Electrochemistry of Symmetrical Ion Channel: A Three-Dimensional Nernst-Planck- Poisson Model. ECS Transactions, 2014, 61, 11-20.	0.5	4
179	Electrochemical measurements in clinical chemistry. Fresenius' Journal of Analytical Chemistry, 1990, 337, 518-521.	1.5	3
180	Continuous Modeling of Calcium Transport Through Biological Membranes. Journal of Materials Engineering and Performance, 2016, 25, 3285-3290.	2.5	3

#	Article	IF	CITATIONS
181	Special Issue "Advances in Artificial and Biological Membranes: Mechanisms of Ionic Sensitivity, Ion-Sensor Designs, and Applications for Ion Measurement― Membranes, 2020, 10, 427.	3.0	3
182	Long-Time Evaluation of Solid-State Composite Reference Electrodes. Membranes, 2022, 12, 569.	3.0	3
183	Procedure 4 Determination of Ca(II) in wood pulp using a calcium-selective electrode with poly(3,4-ethylenedioxythiophene) as ion-to-electron transducer. Comprehensive Analytical Chemistry, 2007, 49, e25-e28.	1.3	2
184	Determination of the stability constant of the calcium binding ligand in black liquor (BL) by potentiometric titration. Holzforschung, 2016, 70, 733-738.	1.9	2
185	Solid-Contact Electrode with Composite PVC-Based 3D-Printed Membrane. Optimization of Fabrication and Performance. Sensors, 2021, 21, 4909.	3.8	2
186	Biomimetic study of the Ca(2+)-Mg2+ and K(+)-Li+ antagonism on biologically active sites: new methodology to study potential dependent ion exchange. Magnesium Research, 2009, 22, 10-20.	0.5	2
187	Anodic dissolution of copper(II) sulphide. Surface Technology, 1981, 12, 265-268.	0.4	1
188	Preface to the First International Workshop on Unique Magnesium-Sensitive Ion Selective Electrodes. Scandinavian Journal of Clinical and Laboratory Investigation, 1994, 54, 2-2.	1.2	1
189	Amperometric Glucose Biosensor for an Undiluted Whole-Blood Analysis Analytical Sciences, 1994, 10, 423-428.	1.6	1
190	Numerical Solution of the Coupled Nernst-Planck and Poisson Equations for Ion-Selective Membrane Potentials. Materials Research Society Symposia Proceedings, 2002, 752, 1.	0.1	1
191	Title is missing!. Russian Journal of Electrochemistry, 2003, 39, 771-776.	0.9	1
192	Numerical Method and Analysis of Consistency for Electrodiffusion Problem. AIP Conference Proceedings, 2007, , .	0.4	1
193	Blood Glucose Point-of-Care Testing Quality Assessment and Harmonization With Central Laboratory Assays. Point of Care, 2009, 8, 82-86.	0.4	1
194	Electrochemistry and Ion Sensing Properties of Conducting Hydrogel Layers Based on Polypyrrole and Alkoxysulfonated Poly(3,4â€ethylenedioxythiophene) (PEDOT‣). Electroanalysis, 2014, 26, 739-747.	2.9	1
195	Analytical Quality Solid-State Composite Reference Electrode and Electrochemical Platform. ECS Transactions, 2014, 61, 1-10.	0.5	1
196	Optimization of a Reference Electrode with Constrained Liquid Junction for the Measurements of lons. Electroanalysis, 1999, 11, 632-636.	2.9	1
197	Potentiometric Ion Sensors Based on Conducting Polymers. ChemInform, 2003, 34, no.	0.0	0
198	Procedure 1 Measurement of ionized Mg2+ in human blood by ion-selective electrode in automatic blood electrolyte analyzer. Comprehensive Analytical Chemistry, 2007, 49, e5-e11.	1.3	0

#	Article	IF	CITATIONS
199	Modeling Non Equilibrium Potentiometry and Electrochemical Impedance by NPP Model. ECS Meeting Abstracts, 2012, , .	0.0	0
200	Conducting Polymer-Based Reference Electrodes. , 2013, , 305-324.		0
201	Potentiometric Determination of Copper in Various Plating Baths. , 1990, , 145-148.		0