
Andrea Schietinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8925697/publications.pdf Version: 2024-02-01

ANDREA SCHIETINCER

#	Article	IF	CITATIONS
1	CD8+ T cell differentiation and dysfunction in cancer. Nature Reviews Immunology, 2022, 22, 209-223.	22.7	345
2	An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature, 2022, 602, 156-161.	27.8	85
3	TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. Journal of Experimental Medicine, 2022, 219, .	8.5	64
4	Ketohexokinase-mediated fructose metabolism is lost in hepatocellular carcinoma and can be leveraged for metabolic imaging. Science Advances, 2022, 8, eabm7985.	10.3	9
5	Turbocharging the T Cell to Fight Cancer. New England Journal of Medicine, 2022, 386, 2334-2336.	27.0	3
6	Imaging Tumor-Infiltrating Lymphocytes in Brain Tumors with [64Cu]Cu-NOTA-anti-CD8 PET. Clinical Cancer Research, 2021, 27, 1958-1966.	7.0	21
7	An unbiased approach to defining bona fide cancer neoepitopes that elicit immune-mediated cancer rejection. Journal of Clinical Investigation, 2021, 131, .	8.2	22
8	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	27.8	649
9	Ectopic activation of the miR-200c–EpCAM axis enhances antitumor T cell responses in models of adoptive cell therapy. Science Translational Medicine, 2021, 13, eabg4328.	12.4	8
10	Exercise and immunometabolic regulation in cancer. Nature Metabolism, 2020, 2, 849-857.	11.9	25
11	Mite Burden and Immunophenotypic Response to <i>Demodex musculi</i> in Swiss Webster, BALB/c, C57BL/6, and NSG Mice. Comparative Medicine, 2020, 70, 336-348.	1.0	0
12	TOX is a critical regulator of tumour-specific T cell differentiation. Nature, 2019, 571, 270-274.	27.8	697
13	Defining â€ [~] T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	22.7	879
14	Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections. Current Opinion in Immunology, 2019, 58, 98-103.	5.5	83
15	Rejection of immunogenic tumor clones is limited by clonal fraction. ELife, 2018, 7, .	6.0	88
16	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	30.7	179
17	Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature, 2017, 545, 452-456.	27.8	643
18	Tumor-Specific T Cell Dysfunction Is a Dynamic Antigen-Driven Differentiation Program Initiated Early during Tumorigenesis. Immunity, 2016, 45, 389-401.	14.3	496

ANDREA SCHIETINGER

#	Article	IF	CITATIONS
19	Murine Donor 1928z CAR T Cells Exert Potent Graft-Versus-Lymphoma Activity without Graft-Versus-Host-Disease. Blood, 2016, 128, 653-653.	1.4	1
20	Chromatin State Dynamics Underlying CD8 T Cell Differentiation and Dysfunction in Cancer. Blood, 2016, 128, 861-861.	1.4	0
21	Beyond Genomics: Multidimensional Analysis of Cancer Therapy Resistance. Trends in Immunology, 2015, 36, 665-667.	6.8	2
22	Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends in Immunology, 2014, 35, 51-60.	6.8	513
23	Longitudinal confocal microscopy imaging of solid tumor destruction following adoptive T cell transfer. Oncolmmunology, 2013, 2, e26677.	4.6	47
24	Rescued Tolerant CD8 T Cells Are Preprogrammed to Reestablish the Tolerant State. Science, 2012, 335, 723-727.	12.6	149
25	Ribosomal versus nonâ€ribosomal cellular antigens: factors determining efficiency of indirect presentation to CD4 ⁺ T cells. Immunology, 2010, 130, 494-503.	4.4	7
26	Bystander killing of cancer requires the cooperation of CD4+ and CD8+ T cells during the effector phase. Journal of Experimental Medicine, 2010, 207, 2469-2477.	8.5	116
27	Specificity in cancer immunotherapy. Seminars in Immunology, 2008, 20, 276-285.	5.6	98
28	Equilibrium between Host and Cancer Caused by Effector T Cells Killing Tumor Stroma. Cancer Research, 2008, 68, 1563-1571.	0.9	70
29	Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. Journal of Experimental Medicine, 2007, 204, 49-55	8.5	348