James A Birchler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8925248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene-dosage issues: a recurrent theme in whole genome duplication events. Trends in Genetics, 2022, 38, 1-3.	2.9	8
2	Effect of aneuploidy of a nonâ€essential chromosome on gene expression in maize. Plant Journal, 2022, 110, 193-211.	2.8	8
3	The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell, 2022, 34, 2466-2474.	3.1	73
4	Focus on plant genetics: Celebrating Gregor Mendel's 200th birth anniversary. Plant Cell, 2022, 34, 2453-2454.	3.1	3
5	The non-Mendelian behavior of plant B chromosomes. Chromosome Research, 2022, 30, 229-239.	1.0	11
6	Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize. Nature Communications, 2022, 13, .	5.8	1
7	Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. Plant Biotechnology Journal, 2022, 20, 2051-2063.	4.1	15
8	Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize. New Phytologist, 2021, 229, 3294-3302.	3.5	19
9	Phosphorylation of histone H3 by Haspin regulates chromosome alignment and segregation during mitosis in maize. Journal of Experimental Botany, 2021, 72, 1046-1058.	2.4	8
10	A transposon surveillance mechanism that safeguards plant male fertility during stress. Nature Plants, 2021, 7, 34-41.	4.7	25
11	Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. Plant Cell, 2021, 33, 917-939.	3.1	22
12	Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize. Plant Cell, 2021, 33, 901-916.	3.1	22
13	Emerging roles of centromeric RNAs in centromere formation and function. Genes and Genomics, 2021, 43, 217-226.	0.5	11
14	Focus on the biology of plant genomes. Plant Cell, 2021, 33, 781-782.	3.1	0
15	Knl1 participates in spindle assembly checkpoint signaling in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
16	Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
17	Genome-wide mapping reveals R-loops associated with centromeric repeats in maize. Genome Research, 2021, 31, 1409-1418.	2.4	37

De novo centromere formation on chromosome fragments with an inactive centromere in maize (Zea) Tj ETQq0 0 Q rgBT /Overlock 10 T $\frac{10}{4}$

#	Article	IF	CITATIONS
19	The supernumerary B chromosome of maize: drive and genomic conflict. Open Biology, 2021, 11, 210197.	1.5	10
20	One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenetic and Genome Research, 2021, 161, 529-550.	0.6	28
21	The deposition of CENH3 in maize is stringently regulated. Plant Journal, 2020, 102, 6-17.	2.8	20
22	An empirical bayesian approach for testing gene expression fold change and its application in detecting global dosage effects. NAR Genomics and Bioinformatics, 2020, 2, Iqaa072.	1.5	0
23	Plant science decadal vision 2020–2030: Reimagining the potential of plants for a healthy and sustainable future. Plant Direct, 2020, 4, e00252.	0.8	26
24	Rapid Birth or Death of Centromeres on Fragmented Chromosomes in Maize. Plant Cell, 2020, 32, 3113-3123.	3.1	14
25	Siteâ€specific recombinase genome engineering toolkit in maize. Plant Direct, 2020, 4, e00209.	0.8	8
26	A universal chromosome identification system for maize and wild Zea species. Chromosome Research, 2020, 28, 183-194.	1.0	26
27	Magnitude of modulation of gene expression in aneuploid maize depends on the extent of genomic imbalance. Journal of Genetics and Genomics, 2020, 47, 93-103.	1.7	15
28	Engineered minichromosomes in plants. Experimental Cell Research, 2020, 388, 111852.	1.2	12
29	Development of a Transformable Fast-Flowering Mini-Maize as a Tool for Maize Gene Editing. Frontiers in Genome Editing, 2020, 2, 622227.	2.7	12
30	The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. Methods in Molecular Biology, 2020, 2093, 161-171.	0.4	14
31	Inbreeding Depression in Genotypically Matched Diploid and Tetraploid Maize. Frontiers in Genetics, 2020, 11, 564928.	1.1	7
32	Kinetics Genetics and Heterosis. , 2020, , 305-321.		0
33	Genomic Balance and Speciation. Epigenetics Insights, 2019, 12, 251686571984029.	0.6	4
34	Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nature Communications, 2019, 10, 4604.	5.8	40
35	Progressive heterosis in genetically defined tetraploid maize. Journal of Genetics and Genomics, 2019, 46, 389-396.	1.7	8
36	Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1679-1685.	3.3	95

#	Article	IF	CITATIONS
37	Genomic Balance Plays Out in Evolution. Plant Cell, 2019, 31, 1186-1187.	3.1	9
38	Hybrid Decay: A Transgenerational Epigenetic Decline in Vigor and Viability Triggered in Backcross Populations of Teosinte with Maize. Genetics, 2019, 213, 143-160.	1.2	7
39	Location of low copy genes in chromosomes of Brachiaria spp Molecular Biology Reports, 2018, 45, 109-118.	1.0	7
40	Highâ€efficiency genome editing using a <i>dmc1</i> promoterâ€controlled <scp>CRISPR</scp> /Cas9 system in maize. Plant Biotechnology Journal, 2018, 16, 1848-1857.	4.1	108
41	A Kinesin-14 Motor Activates Neocentromeres to Promote Meiotic Drive in Maize. Cell, 2018, 173, 839-850.e18.	13.5	104
42	Barbara McClintock's Unsolved Chromosomal Mysteries: Parallels to Common Rearrangements and Karyotype Evolution. Plant Cell, 2018, 30, 771-779.	3.1	21
43	Global impacts of chromosomal imbalance on gene expression in <i>Arabidopsis</i> and other taxa. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11321-E11330.	3.3	51
44	An overview of rice genetics research in China. Journal of Genetics and Genomics, 2018, 45, 563-564.	1.7	1
45	Genomics of Maize Centromeres. Compendium of Plant Genomes, 2018, , 59-80.	0.3	2
46	The Behavior of the Maize B Chromosome and Centromere. Genes, 2018, 9, 476.	1.0	7
47	Meiotic Studies on Combinations of Chromosomes With Different Sized Centromeres in Maize. Frontiers in Plant Science, 2018, 9, 785.	1.7	8
48	Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genetics, 2018, 14, e1007162.	1.5	97
49	Dynamic location changes of Bub1â€phosphorylatedâ€H2AThr133 with CENH3 nucleosome in maize centromeric regions. New Phytologist, 2017, 214, 682-694.	3.5	19
50	B Chromosomes. , 2017, , 13-39.		5
51	Fluorescence In Situ Hybridization for <i>Glycine max</i> Metaphase Chromosomes. Current Protocols in Plant Biology, 2017, 2, 89-107.	2.8	2
52	Metaphase Chromosome Preparation from Soybean (<i>Glycine max</i>) Root Tips. Current Protocols in Plant Biology, 2017, 2, 78-88.	2.8	3
53	Aging: Somatic Mutations, Epigenetic Drift and Gene Dosage Imbalance. Trends in Cell Biology, 2017, 27, 299-310.	3.6	27
54	Editing the Phenotype: A Revolution for Quantitative Genetics. Cell, 2017, 171, 269-270.	13.5	15

#	Article	IF	CITATIONS
55	Cohesion and centromere activity are required for phosphorylation of histone H3 in maize. Plant Journal, 2017, 92, 1121-1131.	2.8	12
56	Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3. Chromosome Research, 2017, 25, 299-311.	1.0	17
57	BiBAC Modification and Stable Transfer into Maize (Zea mays) Hiâ€II Immature Embryos via Agrobacterium― Mediated Transformation. Current Protocols in Plant Biology, 2017, 2, 350-369.	2.8	6
58	Parallel Universes for Models of X Chromosome Dosage Compensation in <i>Drosophila</i> : A Review. Cytogenetic and Genome Research, 2016, 148, 52-67.	0.6	28
59	High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events. Frontiers in Plant Science, 2016, 7, 308.	1.7	28
60	Plant artificial chromosome technology and its potential application in genetic engineering. Plant Biotechnology Journal, 2016, 14, 1175-1182.	4.1	33
61	Fluorescence In Situ Hybridization to Maize (Zea mays) Chromosomes. Current Protocols in Plant Biology, 2016, 1, 530-545.	2.8	2
62	Preparation of Chromosomes fromZea mays. Current Protocols in Plant Biology, 2016, 1, 501-509.	2.8	2
63	Hybrid vigour characterized. Nature, 2016, 537, 620-621.	13.7	11
64	Production of Engineered Minichromosome Vectors via the Introduction of Telomere Sequences. Methods in Molecular Biology, 2016, 1469, 1-13.	0.4	0
65	Dynamic chromatin changes associated with <i>de novo</i> centromere formation in maize euchromatin. Plant Journal, 2016, 88, 854-866.	2.8	23
66	Fast-Flowering Mini-Maize: Seed to Seed in 60 Days. Genetics, 2016, 204, 35-42.	1.2	25
67	Telomereâ€Mediated Chromosomal Truncation for Generating Engineered Minichromosomes in Maize. Current Protocols in Plant Biology, 2016, 1, 488-500.	2.8	2
68	Marcus Rhoades on Preferential Segregation in Maize. Genetics, 2016, 203, 1489-1490.	1.2	1
69	Curt Stern on Somatic Crossing Over. Genetics, 2016, 203, 615-616.	1.2	0
70	Kinetics genetics: Incorporating the concept of genomic balance into an understanding of quantitative traits. Plant Science, 2016, 245, 128-134.	1.7	43
71	A green fluorescent protein-engineered haploid inducer line facilitates haploid mutant screens and doubled haploid breeding in maize. Molecular Breeding, 2016, 36, 1.	1.0	16
72	Plant minichromosomes. Current Opinion in Biotechnology, 2016, 37, 135-142.	3.3	16

#	Article	IF	CITATIONS
73	Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System. Journal of Genetics and Genomics, 2016, 43, 37-43.	1.7	137
74	Heterosis: The genetic basis of hybrid vigour. Nature Plants, 2015, 1, 15020.	4.7	38
75	Models of buffering of dosage imbalances in protein complexes. Biology Direct, 2015, 10, 42.	1.9	18
76	Generation of a Maize B Centromere Minimal Map Containing the Central Core Domain. G3: Genes, Genomes, Genetics, 2015, 5, 2857-2864.	0.8	2
77	Minichromosomes: Vectors for Crop Improvement. Agronomy, 2015, 5, 309-321.	1.3	3
78	From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data. PLoS ONE, 2015, 10, e0125000.	1.1	7
79	Dynamic epigenetic states of maize centromeres. Frontiers in Plant Science, 2015, 6, 904.	1.7	14
80	The Plant CellIntroduces Breakthrough Reports: A New Forum for Cutting-Edge Plant Research. Plant Cell, 2015, , tpc.15.00862.	3.1	1
81	X chromosome inactivation and active X upregulation in therian mammals: facts, questions, and hypotheses. Journal of Molecular Cell Biology, 2015, 7, 2-11.	1.5	46
82	Engineered minichromosomes in plants. Chromosome Research, 2015, 23, 77-85.	1.0	9
83	Recent advances in plant centromere biology. Science China Life Sciences, 2015, 58, 240-245.	2.3	8
84	Promises and pitfalls of synthetic chromosomes in plants. Trends in Biotechnology, 2015, 33, 189-194.	4.9	17
85	Engineered Minichromosomes in Plants. International Review of Cell and Molecular Biology, 2015, 318, 63-119.	1.6	4
86	Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1263-E1271.	3.3	46
87	Mendel, Mechanism, Models, Marketing, and More. Cell, 2015, 163, 9-11.	13.5	11
88	Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize. G3: Genes, Genomes, Genetics, 2015, 5, 2229-2239.	0.8	16
89	Interploidy hybridization barrier of endosperm as a dosage interaction. Frontiers in Plant Science, 2014, 5, 281.	1.7	31
90	Does ectopic cell death cause somatic mutations in the neighboring cells by activating transposons?. Mobile Genetic Elements, 2014, 4, e28040.	1.8	0

#	Article	IF	CITATIONS
91	Polyploids as a "model system―for the study of heterosis. Plant Reproduction, 2014, 27, 1-5.	1.3	38
92	Molecular Mechanisms of Homologous Chromosome Pairing and Segregation in Plants. Journal of Genetics and Genomics, 2014, 41, 117-123.	1.7	16
93	Facts and artifacts in studies of gene expression in aneuploids and sex chromosomes. Chromosoma, 2014, 123, 459-469.	1.0	27
94	Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Current Opinion in Plant Biology, 2014, 19, 91-98.	3.5	261
95	Engineered minichromosomes in plants. Current Opinion in Plant Biology, 2014, 19, 76-80.	3.5	11
96	The Gene Balance Hypothesis: Dosage Effects in Plants. Methods in Molecular Biology, 2014, 1112, 25-32.	0.4	40
97	Intragenomic Conflict Between the Two Major Knob Repeats of Maize. Genetics, 2013, 194, 81-89.	1.2	31
98	In vivo modification of a maize engineered minichromosome. Chromosoma, 2013, 122, 221-232.	1.0	31
99	Aneuploidy in plants and flies: The origin of studies of genomic imbalance. Seminars in Cell and Developmental Biology, 2013, 24, 315-319.	2.3	29
100	Heritable Loss of Replication Control of a Minichromosome Derived from the B Chromosome of Maize. Genetics, 2013, 193, 77-84.	1.2	4
101	Centromere Epigenetics in Plants. Journal of Genetics and Genomics, 2013, 40, 201-204.	1.7	10
102	Labeling Meiotic Chromosomes in Maize with Fluorescence In Situ Hybridization. Methods in Molecular Biology, 2013, 990, 35-43.	0.4	0
103	Gene dosage effects: nonlinearities, genetic interactions, and dosage compensation. Trends in Genetics, 2013, 29, 385-393.	2.9	111
104	Dosage compensation and inverse effects in triple X metafemales of <i>Drosophila</i> . Proceedings of the United States of America, 2013, 110, 7383-7388.	3.3	51
105	Genomic dosage effects on heterosis in triploid maize. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2665-2669.	3.3	94
106	Meiotic behavior of small chromosomes in maize. Frontiers in Plant Science, 2013, 4, 505.	1.7	13
107	De novo centromere formation on a chromosome fragment in maize. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6033-6036.	3.3	62
108	Male-specific lethal complex in <i>Drosophila</i> counteracts histone acetylation and does not mediate dosage compensation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E808-17.	3.3	46

#	Article	IF	CITATIONS
109	Differential effect of aneuploidy on the X chromosome and genes with sex-biased expression in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16514-16519.	3.3	41
110	Aluminum tolerance in maize is associated with higher <i>MATE1</i> gene copy number. Proceedings of the United States of America, 2013, 110, 5241-5246.	3.3	265
111	Quantitatively Increased Somatic Transposition of Transposable Elements in Drosophila Strains Compromised for RNAi. PLoS ONE, 2013, 8, e72163.	1.1	18
112	Identification of <i>Inverse Regulator-a</i> (<i>Inr-a</i>) as Synonymous with Pre-mRNA Cleavage Complex II Protein (<i>Pcf11</i>) in Drosophila. G3: Genes, Genomes, Genetics, 2012, 2, 701-706.	0.8	16
113	Claims and counterclaims of X-chromosome compensation. Nature Structural and Molecular Biology, 2012, 19, 3-5.	3.6	16
114	A transgenic system for generation of transposon Ac/Ds-induced chromosome rearrangements in rice. Theoretical and Applied Genetics, 2012, 125, 1449-1462.	1.8	20
115	Gene balance hypothesis: Connecting issues of dosage sensitivity across biological disciplines. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14746-14753.	3.3	491
116	Fluorescence In Situ Hybridization and In Situ PCR. , 2012, , 295-309.		0
117	Dicentric Chromosome Formation and Epigenetics of Centromere Formation in Plants. Journal of Genetics and Genomics, 2012, 39, 125-130.	1.7	24
118	Synthetic Chromosome Platforms in Plants. Annual Review of Plant Biology, 2012, 63, 307-330.	8.6	38
119	Messing with Mendel. Developmental Cell, 2012, 23, 678-679.	3.1	1
120	Insights from paleogenomic and population studies into the consequences of dosage sensitive gene expression in plants. Current Opinion in Plant Biology, 2012, 15, 544-548.	3.5	26
121	Genetic Consequences of Polyploidy in Plants. , 2012, , 21-32.		16
122	Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes and Development, 2012, 26, 638-640.	2.7	27
123	Plant Centromeres. , 2012, , 133-142.		2
124	Multiple maize minichromosomes in meiosis. Chromosome Research, 2012, 20, 395-402.	1.0	19
125	Chromosome Painting for Plant Biotechnology. Methods in Molecular Biology, 2011, 701, 67-96.	0.4	26
126	Recovery of a telomere-truncated chromosome via a compensating translocation in maize. Genome, 2011, 54, 184-195.	0.9	11

#	Article	IF	CITATIONS
127	Re-evaluation of the function of the male specific lethal complex in Drosophila. Journal of Genetics and Genomics, 2011, 38, 327-332.	1.7	10
128	Protein?Protein and Protein?DNA Dosage Balance and Differential Paralog Transcription Factor Retention in Polyploids. Frontiers in Plant Science, 2011, 2, 64.	1.7	16
129	Epigenetic aspects of centromere function in plants. Current Opinion in Plant Biology, 2011, 14, 217-222.	3.5	33
130	Inactivation of a centromere during the formation of a translocation in maize. Chromosome Research, 2011, 19, 755-761.	1.0	50
131	Phenotypic and gene expression analyses of a ploidy series of maize inbred Oh43. Plant Molecular Biology, 2011, 75, 237-251.	2.0	58
132	Maize centromeres: where sequence meets epigenetics. Frontiers in Biology, 2011, 6, 102-108.	0.7	0
133	Implications of the gene balance hypothesis for dosage compensation. Frontiers in Biology, 2011, 6, 118-124.	0.7	1
134	Reflections on the inhibition of RNAi by cell death signaling. Fly, 2011, 5, 337-339.	0.9	1
135	Inhibition of RNA Interference and Modulation of Transposable Element Expression by Cell Death in <i>Drosophila</i> . Genetics, 2011, 188, 823-834.	1.2	9
136	Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Research, 2011, 21, 908-914.	2.4	65
137	Gene expression analysis at the intersection of ploidy and hybridity in maize. Theoretical and Applied Genetics, 2010, 120, 341-353.	1.8	108
138	Dominance and gene dosage balance in health and disease: why levels matter!. Journal of Pathology, 2010, 220, 174-185.	2.1	63
139	The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytologist, 2010, 186, 54-62.	3.5	286
140	Heterosis. Plant Cell, 2010, 22, 2105-2112.	3.1	425
141	Preface. Cytogenetic and Genome Research, 2010, 129, 5-5.	0.6	Ο
142	A Fluorescence <i>in Situ</i> Hybridization System for Karyotyping Soybean. Genetics, 2010, 185, 727-744.	1.2	70
143	Engineered Minichromosomes in Plants. Critical Reviews in Plant Sciences, 2010, 29, 135-147.	2.7	25
144	Sporophytic nondisjunction of the maize B chromosome at high copy numbers. Journal of Genetics and Genomics, 2010, 37, 79-84.	1.7	18

#	Article	IF	CITATIONS
145	Reflections on studies of gene expression in aneuploids. Biochemical Journal, 2010, 426, 119-123.	1.7	43
146	Pairing in plants: Import is important. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19751-19752.	3.3	2
147	Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes and Development, 2009, 23, 755-765.	2.7	61
148	Reactivation of an Inactive Centromere Reveals Epigenetic and Structural Components for Centromere Specification in Maize. Plant Cell, 2009, 21, 1929-1939.	3.1	153
149	A tale of two centromeres—diversity of structure but conservation of function in plants and animals. Functional and Integrative Genomics, 2009, 9, 7-13.	1.4	22
150	Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila. Epigenetics and Chromatin, 2009, 2, 15.	1.8	30
151	Cytogenetics and Chromosomal Structural Diversity. , 2009, , 163-177.		1
152	Maize Centromeres: Structure, Function, Epigenetics. Annual Review of Genetics, 2009, 43, 287-303.	3.2	47
153	Ubiquitous RNA-dependent RNA polymerase and gene silencing. Genome Biology, 2009, 10, 243.	13.9	10
154	Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons. PLoS Genetics, 2009, 5, e1000743.	1.5	168
155	Role of Small RNAs in Establishing Chromosomal Architecture in Drosophila. , 2009, , 177-185.		Ο
156	Histone modifications associated with both A and B chromosomes of maize. Chromosome Research, 2008, 16, 1203-1214.	1.0	59
157	Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Molecular Biology, 2008, 66, 587-598.	2.0	52
158	Comparative analysis of inbred and hybrid maize at the diploid and tetraploid levels. Theoretical and Applied Genetics, 2008, 116, 563-576.	1.8	44
159	Stability of Repeated Sequence Clusters in Hybrids of Maize as Revealed by FISH. Tropical Plant Biology, 2008, 1, 34-39.	1.0	17
160	Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development. Chromosoma, 2008, 117, 345-356.	1.0	52
161	Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends in Genetics, 2008, 24, 390-397.	2.9	267
162	Plant engineered minichromosomes and artificial chromosome platforms. Cytogenetic and Genome Research, 2008, 120, 228-232.	0.6	23

#	Article	IF	CITATIONS
163	Slicing and Dicing for Small RNAs. Science, 2008, 320, 1023-1024.	6.0	32
164	Minichromosome Analysis of Chromosome Pairing, Disjunction, and Sister Chromatid Cohesion in Maize. Plant Cell, 2008, 19, 3853-3863.	3.1	65
165	Mitochondrial DNA Transfer to the Nucleus Generates Extensive Insertion Site Variation in Maize. Genetics, 2008, 178, 47-55.	1.2	49
166	Genetics and Biochemistry of RNAi in Drosophila. Current Topics in Microbiology and Immunology, 2008, 320, 37-75.	0.7	14
167	Cytological Visualization of DNA Transposons and Their Transposition Pattern in Somatic Cells of Maize. Genetics, 2007, 175, 31-39.	1.2	34
168	Single-Gene Detection and Karyotyping Using Small-Target Fluorescence in Situ Hybridization on Maize Somatic Chromosomes. Genetics, 2007, 175, 1047-1058.	1.2	73
169	Centromere Function and Nondisjunction Are Independent Components of the Maize B Chromosome Accumulation Mechanism. Plant Cell, 2007, 19, 524-533.	3.1	57
170	The Gene Balance Hypothesis: From Classical Genetics to Modern Genomics. Plant Cell, 2007, 19, 395-402.	3.1	391
171	Biological consequences of dosage dependent gene regulatory systems. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 422-428.	2.4	53
172	Plant chromosomes from end to end: telomeres, heterochromatin and centromeres. Current Opinion in Plant Biology, 2007, 10, 116-122.	3.5	39
173	Construction and behavior of engineered minichromosomes in maize. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8924-8929.	3.3	144
174	Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Research, 2007, 15, 33-49.	1.0	93
175	Localization and transcription of a retrotransposon-derived element on the maize B chromosome. Chromosome Research, 2007, 15, 383-98.	1.0	49
176	A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region. Chromosoma, 2007, 116, 237-247.	1.0	38
177	Engineered minichromosomes in plants. Current Opinion in Biotechnology, 2007, 18, 425-431.	3.3	22
178	Characterization of a maize isochromosome 8S·8S. Genome, 2006, 49, 700-706.	0.9	9
179	Organization of endoreduplicated chromosomes in the endosperm of Zea mays L. Chromosoma, 2006, 115, 383-394.	1.0	33
180	Genetic variation for the response to ploidy change in Zea mays L. Theoretical and Applied Genetics, 2006, 114, 101-111.	1.8	79

#	Article	IF	CITATIONS
181	Polycomb, pairing and PIWI – RNA silencing and nuclear interactions. Trends in Biochemical Sciences, 2006, 31, 485-487.	3.7	9
182	Commonalities in compensation. BioEssays, 2006, 28, 565-568.	1.2	26
183	Induction of Tetraploid Derivatives of Maize Inbred Lines by Nitrous Oxide Gas Treatment. Journal of Heredity, 2006, 97, 39-44.	1.0	48
184	Unraveling the genetic basis of hybrid vigor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12957-12958.	3.3	158
185	Retroelement Genome Painting: Cytological Visualization of Retroelement Expansions in the Genera Zea and Tripsacum. Genetics, 2006, 173, 1007-1021.	1.2	67
186	Misregulation of Sex-Lethal and Disruption of Male-Specific Lethal Complex Localization in Drosophila Species Hybrids. Genetics, 2006, 174, 1151-1159.	1.2	23
187	Telomere-mediated chromosomal truncation in maize. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17331-17336.	3.3	116
188	High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3238-3243.	3.3	316
189	RNAi-mediated pathways in the nucleus. Nature Reviews Genetics, 2005, 6, 24-35.	7.7	768
190	Dosage balance in gene regulation: biological implications. Trends in Genetics, 2005, 21, 219-226.	2.9	331
191	Advances in plant chromosome identification and cytogenetic techniques. Current Opinion in Plant Biology, 2005, 8, 148-154.	3.5	86
192	Global analysis of siRNA-mediated transcriptional gene silencing. BioEssays, 2005, 27, 1209-1212.	1.2	10
193	A test for ectopic exchange catalyzed by Cre recombinase in maize. Theoretical and Applied Genetics, 2005, 111, 378-385.	1.8	12
194	Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma, 2005, 113, 337-349.	1.0	83
195	Molecular and Functional Dissection of the Maize B Chromosome Centromere. Plant Cell, 2005, 17, 1412-1423.	3.1	110
196	The Dominant Inhibitory Chalcone Synthase Allele C2-Idf (Inhibitor diffuse) From Zea mays (L.) Acts via an Endogenous RNA Silencing MechanismSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY728478 [c2 gene chalcone synthase (wild type) C2-W22], AY728476 (Zea mays L. C2-Idf allele; gene copies C2-Idf-I and C2-Idf-II), and AY728477 (Zea mays L.) T	1.2 j ETQq0 0	63 0 rgBT /Overl
197	Nonadditive Gene Expression in Diploid and Triploid Hybrids of Maize. Genetics, 2005, 169, 389-397.	1.2	198
198	Gene Expression Analysis of the Function of the Male-Specific Lethal Complex in Drosophila. Genetics, 2005, 169, 2061-2074.	1.2	54

#	Article	IF	CITATIONS
199	RNA silencing inDrosophila. FEBS Letters, 2005, 579, 5940-5949.	1.3	62
200	Heterochromatin: RNA Points the Way. Current Biology, 2004, 14, R759-R761.	1.8	8
201	A test for a metastable epigenetic component of heterosis using haploid induction in maize. Theoretical and Applied Genetics, 2004, 108, 1017-1023.	1.8	14
202	Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13554-13559.	3.3	493
203	What's in a centromere?. Genome Biology, 2004, 5, 239.	13.9	22
204	Discovering the seeds of diversity in plant genomes. Genome Biology, 2004, 5, 323.	13.9	0
205	Heterochromatic Silencing and HP1 Localization in Drosophila Are Dependent on the RNAi Machinery. Science, 2004, 303, 669-672.	6.0	624
206	Dosage dependent gene regulation and the compensation of the X chromosome in Drosophila males. Genetica, 2003, 117, 179-190.	0.5	35
207	Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends in Genetics, 2003, 19, 597-600.	2.9	114
208	Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 2003, 19, 141-147.	2.9	812
209	A molecular view of plant centromeres. Trends in Plant Science, 2003, 8, 570-575.	4.3	300
210	The role of DNA sequence in centromere formation. Genome Biology, 2003, 4, 214.	13.9	33
211	In Search of the Molecular Basis of Heterosis. Plant Cell, 2003, 15, 2236-2239.	3.1	428
212	Marcus Rhoades, Preferential Segregation and Meiotic Drive. Genetics, 2003, 164, 835-841.	1.2	22
213	Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3. Plant Cell, 2002, 14, 2825-2836.	3.1	354
214	Cytological and molecular analysis of centromere misdivision in maize. Genome, 2002, 45, 759-768.	0.9	23
215	RNAi Related Mechanisms Affect Both Transcriptional and Posttranscriptional Transgene Silencing in Drosophila. Molecular Cell, 2002, 9, 315-327.	4.5	358
216	Dosage-Dependent Gene Regulation in Multicellular Eukaryotes: Implications for Dosage Compensation, Aneuploid Syndromes, and Quantitative Traits. Developmental Biology, 2001, 234, 275-288.	0.9	328

#	Article	IF	CITATIONS
217	Developmental impact ontrans-acting dosage effects in maize aneuploids. Genesis, 2001, 31, 64-71.	0.8	10
218	Nuclear Gene Dosage Effects Upon the Expression of Maize Mitochondrial Genes. Genetics, 2001, 157, 1711-1721.	1.2	19
219	Characterization of a Maize Chromosome 4 Centromeric Sequence: Evidence for an Evolutionary Relationship With the B Chromosome Centromere. Genetics, 2001, 159, 291-302.	1.2	95
220	Krüppel homolog (Kr h) is a dosage-dependent modifier of gene expression in Drosophila. Genetical Research, 2000, 75, 137-142.	0.3	7
221	Making noise about silence: repression of repeated genes in animals. Current Opinion in Genetics and Development, 2000, 10, 211-216.	1.5	79
222	Histone Acetylation and Gene Expression Analysis of <i>Sex lethal</i> Mutants in Drosophila. Genetics, 2000, 155, 753-763.	1.2	32
223	The <i>oxen</i> Gene of Drosophila Encodes a Homolog of Subunit 9 of Yeast Ubiquinol-Cytochrome <i>c</i> Oxidoreductase Complex: Evidence for Modulation of Gene Expression in Response to Mitochondrial Activity. Genetics, 2000, 156, 1727-1736.	1.2	9
224	Less from more: cosuppression of transposable elements. Nature Genetics, 1999, 21, 148-149.	9.4	20
225	Cosuppression of Nonhomologous Transgenes in Drosophila Involves Mutually Related Endogenous Sequences. Cell, 1999, 99, 35-46.	13.5	89
226	Role of the male specific lethal (msl) Genes in Modifying the Effects of Sex Chromosomal Dosage in Drosophila. Genetics, 1999, 152, 249-268.	1.2	61
227	Regena (Rga), a Drosophila Homolog of the Global Negative Transcriptional Regulator CDC36 (NOT2) from Yeast, Modifies Gene Expression and Suppresses Position Effect Variegation. Genetics, 1998, 148, 317-329.	1.2	40
228	Interactions Among Dosage-Dependent Trans-Acting Modifiers of Gene Expression and Position-Effect Variegation in Drosophila. Genetics, 1998, 150, 251-263.	1.2	15
229	Mutation in P0, a Dual Function Ribosomal Protein/Apurinic/Apyrimidinic Endonuclease, Modifies Gene Expression and Position Effect Variegation in Drosophila. Genetics, 1998, 150, 1487-1495.	1.2	34
230	Meiotic Transmission Rates Correlate With Physical Features of Rearranged Centromeres in Maize. Genetics, 1998, 150, 1683-1692.	1.2	99
231	Cosuppression in Drosophila: Gene Silencing of Alcohol dehydrogenase by white-Adh Transgenes Is Polycomb Dependent. Cell, 1997, 90, 479-490.	13.5	236
232	Do These Sequences Make CENs Yet?. Genome Research, 1997, 7, 1035-1037.	2.4	9
233	Dosage regulation of Zea mays homeobox (ZmHox) genes and their relationship with the dosage-sensitive regulatory factors of Shrunken 1 (Sh1) in maize. Genesis, 1997, 20, 67-73.	3.1	3
234	A Sex-Influenced Modifier in Drosophila That Affects a Broad Spectrum of Target Loci Including the Histone Repeats. Genetics, 1997, 146, 903-917.	1.2	23

#	Article	IF	CITATIONS
235	Dosage Effects on Gene Expression in a Maize Ploidy Series. Genetics, 1996, 142, 1349-1355.	1.2	269
236	Characterization of a sex-influenced modifier of gene expression and suppressor of position-effect variegation in. Molecular Genetics and Genomics, 1996, 250, 601.	2.4	0
237	Dosage Analysis of Maize Endosperm Development. Annual Review of Genetics, 1993, 27, 181-204.	3.2	141
238	Dosage dependent modifiers of white alleles in Drosophila melanogaster. Genetical Research, 1993, 62, 15-22.	0.3	36
239	Expression of <i>cis</i> -regulatory mutations of the <i>white</i> locus in metafemales of <i>Drosophila melanogaster</i> . Genetical Research, 1992, 59, 11-18.	0.3	33
240	Amaizing results. Trends in Genetics, 1990, 6, 231-232.	2.9	4
241	Interactions among modifiers of retrotransposon-induced alleles of the white locus of Drosophila melanogaster. Genetical Research, 1990, 55, 141-151.	0.3	10
242	Interaction of Endosperm Size Factors in Maize. Genetics, 1987, 117, 309-317.	1.2	41
243	Genetic analysis of the sexual dimorphism of glass in <i>Drosophila melanogaster</i> . Genetical Research, 1984, 44, 125-132.	0.3	8
244	Allozymes in Gene Dosage Studies. Developments in Plant Genetics and Breeding, 1983, 1, 85-108.	0.6	12
245	DOSAGE COMPENSATION OF SERINE-4 TRANSFER RNA IN <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1982, 102, 525-537.	1.2	25
246	THE GENETIC BASIS OF DOSAGE COMPENSATION OF ALCOHOL DEHYDROGENASE-1 IN MAIZE. Genetics, 1981, 97, 625-637.	1.2	121
247	MODULATION OF PROTEIN LEVELS IN CHROMOSOMAL DOSAGE SERIES OF MAIZE: THE BIOCHEMICAL BASIS OF ANEUPLOID SYNDROMES. Genetics, 1981, 99, 247-266.	1.2	174
248	On the nonautonomy of the small-kernel phenotype produced by B–A translocations in maize. Genetical Research, 1980, 36, 111-116.	0.3	13
249	THE CYTOGENETIC LOCALIZATION OF THE ALCOHOL DEHYDROGENASE-1 LOCUS IN MAIZE. Genetics, 1980, 94, 687-700.	1.2	35
250	Mutational study of the alcohol dehydrogenase-1 FC m duplication in maize. Biochemical Genetics, 1979, 17, 1173-1180.	0.8	18
251	A STUDY OF ENZYME ACTIVITIES IN A DOSAGE SERIES OF THE LONG ARM OF CHROMOSOME ONE IN MAIZE. Genetics, 1979, 92, 1211-1229.	1.2	142