Jason S Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8925131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature, 2012, 481, 389-393.	13.7	1,655
2	Pioneer transcription factors: establishing competence for gene expression. Genes and Development, 2011, 25, 2227-2241.	2.7	1,388
3	Genome-wide analysis of estrogen receptor binding sites. Nature Genetics, 2006, 38, 1289-1297.	9.4	1,227
4	Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1. Cell, 2005, 122, 33-43.	13.5	1,208
5	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	13.7	1,099
6	FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription. Cell, 2008, 132, 958-970.	13.5	863
7	Androgen Receptor Regulates a Distinct Transcription Program in Androgen-Independent Prostate Cancer. Cell, 2009, 138, 245-256.	13.5	797
8	FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nature Genetics, 2011, 43, 27-33.	9.4	722
9	A Hierarchical Network of Transcription Factors Governs Androgen Receptor-Dependent Prostate Cancer Growth. Molecular Cell, 2007, 27, 380-392.	4.5	598
10	Progesterone receptor modulates ERα action in breast cancer. Nature, 2015, 523, 313-317.	13.7	504
11	Spatial and Temporal Recruitment of Androgen Receptor and Its Coactivators Involves Chromosomal Looping and Polymerase Tracking. Molecular Cell, 2005, 19, 631-642.	4.5	401
12	Model-based analysis of tiling-arrays for ChIP-chip. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12457-12462.	3.3	390
13	p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 2006, 8, 551-561.	4.6	372
14	Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4260-4265.	3.3	366
15	A CTCF-independent role for cohesin in tissue-specific transcription. Genome Research, 2010, 20, 578-588.	2.4	331
16	Endogenous Purification Reveals GREB1 as a Key Estrogen Receptor Regulatory Factor. Cell Reports, 2013, 3, 342-349.	2.9	319
17	Positive Cross-Regulatory Loop Ties GATA-3 to Estrogen Receptor α Expression in Breast Cancer. Cancer Research, 2007, 67, 6477-6483.	0.4	317
18	Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Research, 2009, 37, 4850-4861.	6.5	310

#	Article	IF	CITATIONS
19	GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Research, 2013, 23, 12-22.	2.4	307
20	Regulation of ERBB2 by oestrogen receptor–PAX2 determines response to tamoxifen. Nature, 2008, 456, 663-666.	13.7	283
21	Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO Journal, 2008, 27, 535-545.	3.5	279
22	A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes and Development, 2006, 20, 2513-2526.	2.7	261
23	Estrogen Receptor Target Gene: An Evolving Concept. Molecular Endocrinology, 2006, 20, 1707-1714.	3.7	249
24	Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO Journal, 2011, 30, 3019-3027.	3.5	247
25	Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nature Protocols, 2016, 11, 316-326.	5.5	235
26	Pioneer factors in hormone-dependent cancers. Nature Reviews Cancer, 2012, 12, 381-385.	12.8	233
27	Cooperative interaction between retinoic acid receptor- $\hat{l}\pm$ and estrogen receptor in breast cancer. Genes and Development, 2010, 24, 171-182.	2.7	227
28	Site-selective modification strategies in antibody–drug conjugates. Chemical Society Reviews, 2021, 50, 1305-1353.	18.7	207
29	Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nature Reviews Cancer, 2007, 7, 713-722.	12.8	191
30	Growth factor stimulation induces a distinct ERα cistrome underlying breast cancer endocrine resistance. Genes and Development, 2010, 24, 2219-2227.	2.7	156
31	IL6/STAT3 Signaling Hijacks Estrogen Receptor α Enhancers to Drive Breast Cancer Metastasis. Cancer Cell, 2020, 38, 412-423.e9.	7.7	145
32	A Functional Variant at a Prostate Cancer Predisposition Locus at 8q24 Is Associated with PVT1 Expression. PLoS Genetics, 2011, 7, e1002165.	1.5	142
33	Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3787-3792.	3.3	129
34	A Pure Estrogen Antagonist Inhibits Cyclin E-Cdk2 Activity in MCF-7 Breast Cancer Cells and Induces Accumulation of p130-E2F4 Complexes Characteristic of Quiescence. Journal of Biological Chemistry, 2000, 275, 38221-38229.	1.6	126
35	FOXA1 Directs H3K4 Monomethylation at Enhancers via Recruitment of the Methyltransferase MLL3. Cell Reports, 2016, 17, 2715-2723.	2.9	122
36	The androgen receptor is a tumor suppressor in estrogen receptor–positive breast cancer. Nature Medicine, 2021, 27, 310-320.	15.2	122

#	Article	IF	CITATIONS
37	A diagnostic gene profile for molecular subtyping of breast cancer associated with treatment response. Breast Cancer Research and Treatment, 2012, 133, 37-47.	1.1	121
38	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	9.4	120
39	Unique ERα Cistromes Control Cell Type-Specific Gene Regulation. Molecular Endocrinology, 2008, 22, 2393-2406.	3.7	119
40	<i>ZNF703</i> is a common Luminal B breast cancer oncogene that differentially regulates luminal and basal progenitors in human mammary epithelium. EMBO Molecular Medicine, 2011, 3, 167-180.	3.3	119
41	Combined Inhibition of mTOR and CDK4/6 Is Required for Optimal Blockade of E2F Function and Long-term Growth Inhibition in Estrogen Receptor–positive Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 908-920.	1.9	119
42	Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Research, 2008, 18, 393-403.	2.4	117
43	Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer. Molecular Cell, 2020, 78, 1096-1113.e8.	4.5	114
44	Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells. Genome Biology, 2013, 14, R6.	13.9	113
45	Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nature Communications, 2017, 8, 1865.	5.8	108
46	ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nature Genetics, 2020, 52, 187-197.	9.4	108
47	Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes and Development, 2018, 32, 1141-1154.	2.7	107
48	Estrogen and insulin/IGF-1 cooperatively stimulate cell cycle progression in MCF-7 breast cancer cells through differential regulation of c-Myc and cyclin D1. Molecular and Cellular Endocrinology, 2005, 229, 161-173.	1.6	106
49	Oestrogen receptor-co-factor-chromatin specificity in the transcriptional regulation of breast cancer. EMBO Journal, 2011, 30, 4764-4776.	3.5	105
50	Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nature Communications, 2014, 5, 4999.	5.8	105
51	APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer. Cell Reports, 2015, 13, 108-121.	2.9	105
52	A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes. Nature Communications, 2018, 9, 2311.	5.8	104
53	Deciphering the divergent roles of progestogens in breast cancer. Nature Reviews Cancer, 2017, 17, 54-64.	12.8	96
54	A patientâ€derived explant (<scp>PDE</scp>) model of hormoneâ€dependent cancer. Molecular Oncology, 2018, 12, 1608-1622.	2.1	94

#	Article	IF	CITATIONS
55	Comprehensive assessment of estrogen receptor beta antibodies in cancer cell line models and tissue reveals critical limitations in reagent specificity. Molecular and Cellular Endocrinology, 2017, 440, 138-150.	1.6	91
56	AKT Alters Genome-Wide Estrogen Receptor α Binding and Impacts Estrogen Signaling in Breast Cancer. Molecular and Cellular Biology, 2008, 28, 7487-7503.	1.1	87
57	Estrogen receptor beta in prostate cancer: friend or foe?. Endocrine-Related Cancer, 2014, 21, T219-T234.	1.6	85
58	A general approach for the site-selective modification of native proteins, enabling the generation of stable and functional antibody–drug conjugates. Chemical Science, 2019, 10, 694-700.	3.7	85
59	Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4482-E4491.	3.3	83
60	Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer. Cancer Research, 2017, 77, 3417-3430.	0.4	79
61	Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Research, 2002, 62, 6916-23.	0.4	79
62	Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1-DNA binding properties. Genome Biology, 2013, 14, R147.	13.9	76
63	<i>FOXA1</i> Is a Potential Oncogene in Anaplastic Thyroid Carcinoma. Clinical Cancer Research, 2009, 15, 3680-3689.	3.2	75
64	ELF5 Suppresses Estrogen Sensitivity and Underpins the Acquisition of Antiestrogen Resistance in Luminal Breast Cancer. PLoS Biology, 2012, 10, e1001461.	2.6	74
65	FoxA1 is a Key Mediator of Hormonal Response in Breast and Prostate Cancer. Frontiers in Endocrinology, 2012, 3, 68.	1.5	73
66	The liver receptor homolog-1 regulates estrogen receptor expression in breast cancer cells. Breast Cancer Research and Treatment, 2011, 127, 385-396.	1.1	70
67	The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Research, 2014, 42, 6232-6242.	6.5	66
68	ERRα induces H3K9 demethylation by LSD1 to promote cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3909-3914.	3.3	66
69	Estrogen Regulation of Cyclin E2 Requires Cyclin D1 but Not c-Myc. Molecular and Cellular Biology, 2009, 29, 4623-4639.	1.1	61
70	Mechanisms of growth arrest by c-myc antisense oligonucleotides in MCF-7 breast cancer cells: implications for the antiproliferative effects of antiestrogens. Cancer Research, 2002, 62, 3126-31.	0.4	61
71	Runx2 Is a Novel Regulator of Mammary Epithelial Cell Fate in Development and Breast Cancer. Cancer Research, 2014, 74, 5277-5286.	0.4	60
72	A co-ordinated interaction between CTCF and ER in breast cancer cells. BMC Genomics, 2011, 12, 593.	1.2	58

#	Article	IF	CITATIONS
73	A carrier-assisted ChIP-seq method for estrogen receptor-chromatin interactions from breast cancer core needle biopsy samples. BMC Genomics, 2013, 14, 232.	1.2	54
74	FOXA1 mutations in hormone-dependent cancers. Frontiers in Oncology, 2013, 3, 20.	1.3	50
75	Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17. Cancer Research, 2016, 76, 5881-5893.	0.4	50
76	Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. ELife, 2017, 6, .	2.8	50
77	Co-regulated gene expression by oestrogen receptor α and liver receptor homolog-1 is a feature of the oestrogen response in breast cancer cells. Nucleic Acids Research, 2013, 41, 10228-10240.	6.5	49
78	Comprehensive Genomic Analysis Reveals that the Pioneering Function of FOXA1 Is Independent of Hormonal Signaling. Cell Reports, 2019, 26, 2558-2565.e3.	2.9	49
79	Transducin-like enhancer protein 1 mediates estrogen receptor binding and transcriptional activity in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2748-2753.	3.3	47
80	ERÎ ² -mediated induction of cystatins results in suppression of TGFÎ ² signaling and inhibition of triple-negative breast cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9580-E9589.	3.3	47
81	<i>EN1</i> Is a Transcriptional Dependency in Triple-Negative Breast Cancer Associated with Brain Metastasis. Cancer Research, 2019, 79, 4173-4183.	0.4	47
82	Subcellular Localization of Activated AKT in Estrogen Receptor- and Progesterone Receptor-Expressing Breast Cancers. American Journal of Pathology, 2010, 176, 2139-2149.	1.9	40
83	Tamoxifen-Induced Apoptosis of MCF-7 Cells via GPR30/PI3K/MAPKs Interactions: Verification by ODE Modeling and RNA Sequencing. Frontiers in Physiology, 2018, 9, 907.	1.3	40
84	Sulfatase-cleavable linkers for antibody-drug conjugates. Chemical Science, 2020, 11, 2375-2380.	3.7	40
85	Nkx3-1 and LEF-1 Function as Transcriptional Inhibitors of Estrogen Receptor Activity. Cancer Research, 2008, 68, 7380-7385.	0.4	39
86	Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target. Journal of the National Cancer Institute, 2016, 108, djv371.	3.0	37
87	High-throughput sequencing identifies STAT3 as the DNA-associated factor for p53 - NF-kappaB - complex-dependent gene expression in human heart failure. Genome Medicine, 2010, 2, 37.	3.6	32
88	p27(Kip1) induces quiescence and growth factor insensitivity in tamoxifen-treated breast cancer cells. Cancer Research, 2003, 63, 4322-6.	0.4	31
89	Hotspot <i>ESR1</i> Mutations Are Multimodal and Contextual Modulators of Breast Cancer Metastasis. Cancer Research, 2022, 82, 1321-1339.	0.4	30
90	Progesterone Receptor Attenuates STAT1-Mediated IFN Signaling in Breast Cancer. Journal of Immunology, 2019, 202, 3076-3086.	0.4	29

#	Article	IF	CITATIONS
91	Complex Formation and Function of Estrogen Receptor α in Transcription Requires RIP140. Cancer Research, 2014, 74, 5469-5479.	0.4	28
92	Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogenec-KITand amplifies cell proliferation. Nucleic Acids Research, 2018, 46, 11214-11228.	6.5	28
93	Genome-Wide Estrogen Receptor Activity in Breast Cancer. Endocrinology, 2021, 162, .	1.4	28
94	A Low Abundance Pool of Nascent p21WAF1/Cip1 Is Targeted by Estrogen to Activate Cyclin E·Cdk2. Journal of Biological Chemistry, 2001, 276, 45433-45442.	1.6	26
95	FOXA1 and breast cancer risk. Nature Genetics, 2012, 44, 1176-1177.	9.4	26
96	Interplay between estrogen receptor and AKT in Estradiol-induced alternative splicing. BMC Medical Genomics, 2013, 6, 21.	0.7	25
97	Estrogen receptorâ€positive breast cancer: a multidisciplinary challenge. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 216-230.	6.6	24
98	Transcription factors and chromatin proteins as therapeutic targets in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 183-192.	3.3	24
99	The renal lineage factor PAX8 controls oncogenic signalling in kidney cancer. Nature, 2022, 606, 999-1006.	13.7	24
100	Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene, 2018, 37, 2008-2021.	2.6	23
101	The logic of transcriptional regulator recruitment architecture at <i>cis</i> -regulatory modules controlling liver functions. Genome Research, 2017, 27, 985-996.	2.4	22
102	Phosphorylation of activating transcription factor-2 (ATF-2) within the activation domain is a key determinant of sensitivity to tamoxifen in breast cancer. Breast Cancer Research and Treatment, 2014, 147, 295-309.	1.1	21
103	TET2 is a component of the estrogen receptor complex and controls 5mC to 5hmC conversion at estrogen receptor cis-regulatory regions. Cell Reports, 2021, 34, 108776.	2.9	20
104	xMAN: extreme MApping of OligoNucleotides. BMC Genomics, 2008, 9, S20.	1.2	19
105	General dual functionalisation of biomacromolecules <i>via</i> a cysteine bridging strategy. Organic and Biomolecular Chemistry, 2020, 18, 4224-4230.	1.5	19
106	ELF5 modulates the estrogen receptor cistrome in breast cancer. PLoS Genetics, 2020, 16, e1008531.	1.5	17
107	A dual-enzyme cleavable linker for antibody–drug conjugates. Chemical Communications, 2021, 57, 3457-3460.	2.2	16
108	Chromatin Immunoprecipitation-Sequencing (ChIP-seq) for Mapping of Estrogen Receptor-Chromatin Interactions in Breast Cancer. Methods in Molecular Biology, 2016, 1366, 79-98.	0.4	16

#	Article	IF	CITATIONS
109	Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nature Communications, 2021, 12, 6377.	5.8	16
110	A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer. Oncogene, 2019, 38, 1136-1150.	2.6	15
111	Enhancer recruitment of transcription repressors RUNX1 and TLE3 by mis-expressed FOXC1 blocks differentiation in acute myeloid leukemia. Cell Reports, 2021, 36, 109725.	2.9	15
112	Elevated ASCL1 activity creates de novo regulatory elements associated with neuronal differentiation. BMC Genomics, 2022, 23, 255.	1.2	15
113	SRC3 Phosphorylation at Serine 543 Is a Positive Independent Prognostic Factor in ER-Positive Breast Cancer. Clinical Cancer Research, 2016, 22, 479-491.	3.2	14
114	Dephosphorylation of the Proneural Transcription Factor ASCL1 Re-Engages a Latent Post-Mitotic Differentiation Program in Neuroblastoma. Molecular Cancer Research, 2020, 18, 1759-1766.	1.5	14
115	Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer. Breast Cancer Research, 2020, 22, 126.	2.2	14
116	Expeditious Total Synthesis of Hemiasterlin through a Convergent Multicomponent Strategy and Its Use in Targeted Cancer Therapeutics. Angewandte Chemie - International Edition, 2020, 59, 23045-23050.	7.2	14
117	Rapid and robust cysteine bioconjugation with vinylheteroarenes. Chemical Science, 2021, 12, 9060-9068.	3.7	14
118	The GATA3 X308_Splice breast cancer mutation is a hormone context-dependent oncogenic driver. Oncogene, 2020, 39, 5455-5467.	2.6	12
119	ETV6-RUNX1 and RUNX1 directly regulate RAG1 expression: one more step in the understanding of childhood B-cellÂacute lymphoblastic leukemia leukemogenesis. Leukemia, 2022, 36, 549-554.	3.3	11
120	Comparative analysis of the AIB1 interactome in breast cancer reveals MTA2 as a repressive partner which silences E-Cadherin to promote EMT and associates with a pro-metastatic phenotype. Oncogene, 2021, 40, 1318-1331.	2.6	10
121	Divinylpyrimidine reagents generate antibody–drug conjugates with excellent <i>in vivo</i> efficacy and tolerability. Chemical Communications, 2022, 58, 1962-1965.	2.2	10
122	Interrogating the genome to understand oestrogen-receptor-mediated transcription. Expert Reviews in Molecular Medicine, 2008, 10, e10.	1.6	9
123	Estrogen receptor action in three dimensions - looping the loop. Breast Cancer Research, 2010, 12, 303.	2.2	9
124	Identification of ChIP-seq and RIME grade antibodies for Estrogen Receptor alpha. PLoS ONE, 2019, 14, e0215340.	1.1	9
125	Analysis of HER2 genomic binding in breast cancer cells identifies a global role in direct gene regulation. PLoS ONE, 2019, 14, e0225180.	1.1	9
126	Estrogen receptor beta repurposes EZH2 to suppress oncogenic NFκB/p65 signaling in triple negative breast cancer. Npj Breast Cancer, 2022, 8, 20.	2.3	9

#	Article	IF	CITATIONS
127	Approaches for Assessing and Discovering Protein Interactions in Cancer. Molecular Cancer Research, 2013, 11, 1295-1302.	1.5	7
128	RIME proteomics of estrogen and progesterone receptors in breast cancer. Data in Brief, 2015, 5, 276-280.	0.5	7
129	Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2021, 14, 47.	6.9	7
130	ChlPing away at breast cancer. Lancet Oncology, The, 2012, 13, 1185-1187.	5.1	5
131	Enhancer-derived RNAs: â€~spicing up' transcription programs. EMBO Journal, 2013, 32, 2096-2098.	3.5	3
132	Preface. Molecular and Cellular Endocrinology, 2014, 382, 623.	1.6	3
133	The proapoptotic gene interferon regulatory factor-1 mediates the antiproliferative outcome of paired box 2 gene and tamoxifen. Oncogene, 2020, 39, 6300-6312.	2.6	3
134	Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO Journal, 2012, 31, 1617-1617.	3.5	2
135	Targeting LSD1 and FOXA1 in prostate cancer. Nature Genetics, 2020, 52, 1002-1003.	9.4	2
136	ncRNAseq: simple modifications to RNA-seq library preparation allow recovery and analysis of mid-sized non-coding RNAs. BioTechniques, 2022, 72, 21-28.	0.8	2
137	An Examination of the Association between FOXA1 Staining Level and Biochemical Recurrence following Salvage Radiation Therapy for Recurrent Prostate Cancer. PLoS ONE, 2016, 11, e0151785.	1.1	1
138	Expeditious Total Synthesis of Hemiasterlin through a Convergent Multicomponent Strategy and Its Use in Targeted Cancer Therapeutics. Angewandte Chemie, 2020, 132, 23245-23250.	1.6	0
139	Estrogen/Estrogen Antagonist Regulation of the Cell Cycle in Breast Cancer Cells. , 2002, , 57-71.		Ο
140	Antiestrogens and the Cell Cycle. , 2009, , 17-45.		0
141	ELF5 modulates the estrogen receptor cistrome in breast cancer. , 2020, 16, e1008531.		Ο
142	ELF5 modulates the estrogen receptor cistrome in breast cancer. , 2020, 16, e1008531.		0
143	ELF5 modulates the estrogen receptor cistrome in breast cancer. , 2020, 16, e1008531.		0
144	ELF5 modulates the estrogen receptor cistrome in breast cancer. , 2020, 16, e1008531.		0

ELF5 modulates the estrogen receptor cistrome in breast cancer. , 2020, 16, e1008531. 144