Olga Deda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8925003/publications.pdf

Version: 2024-02-01

759233 713466 30 474 12 21 citations h-index g-index papers 31 31 31 777 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An overview of fecal sample preparation for global metabolic profiling. Journal of Pharmaceutical and Biomedical Analysis, 2015, 113, 137-150.	2.8	104
2	Sample preparation optimization in fecal metabolic profiling. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1047, 115-123.	2.3	62
3	Effects of Different Exercise Modes on the Urinary Metabolic Fingerprint of Men with and without Metabolic Syndrome. Metabolites, 2017, 7, 5.	2.9	25
4	Impact of Exercise and Aging on Rat Urine and Blood Metabolome. An LC-MS Based Metabolomics Longitudinal Study. Metabolites, 2017, 7, 10.	2.9	22
5	A pilot case-control study of urine metabolomics in preterm neonates with necrotizing enterocolitis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1117, 10-21.	2.3	19
6	Impact of exercise on fecal and cecal metabolome over aging: a longitudinal study in rats. Bioanalysis, 2017, 9, 21-36.	1.5	18
7	Rat Fecal Metabolomics-Based Analysis. Methods in Molecular Biology, 2018, 1738, 149-157.	0.9	18
8	Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease. Cardiovascular Diabetology, 2022, 21, 70.	6.8	18
9	Selective fluorimetric method for the determination of histamine in seafood samples based on the concept of zone fluidics. Analytica Chimica Acta, 2013, 778, 48-53.	5.4	16
10	Study of Fecal and Urinary Metabolite Perturbations Induced by Chronic Ethanol Treatment in Mice by UHPLC-MS/MS Targeted Profiling. Metabolites, 2019, 9, 232.	2.9	16
11	Comparison of the Serum Metabolic Fingerprint of Different Exercise Modes in Men with and without Metabolic Syndrome. Metabolites, 2019, 9, 116.	2.9	16
12	Correlation of the severity of coronary artery disease with patients' metabolic profile- rationale, design and baseline patient characteristics of the CorLipid trial. BMC Cardiovascular Disorders, 2021, 21, 79.	1.7	15
13	Urine and fecal samples targeted metabolomics of carobs treated rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1114-1115, 76-85.	2.3	13
14	Correlation of Serum Acylcarnitines with Clinical Presentation and Severity of Coronary Artery Disease. Biomolecules, 2022, 12, 354.	4.0	13
15	Serum Ceramides as Prognostic Biomarkers of Large Thrombus Burden in Patients with STEMI: A Micro-Computed Tomography Study. Journal of Personalized Medicine, 2021, 11, 89.	2.5	12
16	Metabolic Phenotyping Study of Mouse Brains Following Acute or Chronic Exposures to Ethanol. Journal of Proteome Research, 2020, 19, 4071-4081.	3.7	11
17	Metabolic profiling study of shikonin's cytotoxic activity in the Huh7 human hepatoma cell line. Molecular BioSystems, 2017, 13, 841-851.	2.9	10
18	Targeted urine metabolomics in preterm neonates with intraventricular hemorrhage. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1104, 240-248.	2.3	10

#	Article	IF	Citations
19	Development and validation of a RPLC-MS/MS method for the quantification of ceramides in human serum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1175, 122734.	2.3	10
20	Serum-Targeted HILIC-MS Metabolomics-Based Analysis in Infants with Ureteropelvic Junction Obstruction. Journal of Proteome Research, 2020, 19, 2294-2303.	3.7	9
21	Association of GRACE Risk Score with Coronary Artery Disease Complexity in Patients with Acute Coronary Syndrome. Journal of Clinical Medicine, 2021, 10, 2210.	2.4	8
22	Evaluation of Cocaine Effect on Endogenous Metabolites of HepG2 Cells Using Targeted Metabolomics. Molecules, 2021, 26, 4610.	3.8	7
23	Impact of religious fasting on metabolic and hematological profile in both dyslipidemic and non-dyslipidemic fasters. European Journal of Clinical Nutrition, 2022, 76, 891-898.	2.9	7
24	GC-MS-Based Metabolic Phenotyping. , 2019, , 137-169.		3
25	Diminished Systemic Amino Acids Metabolome and Lipid Peroxidation in Ureteropelvic Junction Obstruction (UPJO) Infants Requiring Surgery. Journal of Clinical Medicine, 2021, 10, 1467.	2.4	3
26	A HILIC-MS/MS method development and validation for the quantitation of 13 acylcarnitines in human serum. Analytical and Bioanalytical Chemistry, 2022, 414, 3095-3108.	3.7	3
27	Effects of Aging, Long-Term and Lifelong Exercise on the Urinary Metabolic Footprint of Rats. Metabolites, 2020, 10, 481.	2.9	2
28	Metabolic profiling in the arena of gut–brain interaction studies for Alzheimer's disease. Bioanalysis, 2020, 12, 501-504.	1.5	2
29	Investigation of salivary biomarkers as indicators of skeletal and dental maturity in children. Orthodontics and Craniofacial Research, 2022, , .	2.8	1
30	Metabolomics biomarkers in association with nutritional interventions in cardiovascular disease., 2022, 2, .		0