List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8924763/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 2002, 40, 2-1.	9.0	2,380
2	Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research, 2001, 106, 20255-20273.	3.3	1,620
3	GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. Journal of Climate, 2006, 19, 643-674.	1.2	1,431
4	Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Journals of the Atmospheric Sciences, 2002, 59, 461-483.	0.6	1,226
5	Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 2006, 6, 1777-1813.	1.9	1,202
6	Globalâ€scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 2012, 50, .	9.0	1,041
7	Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmospheric Chemistry and Physics, 2006, 6, 4321-4344.	1.9	912
8	The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate, 2011, 24, 3484-3519.	1.2	887
9	Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 2011, 11, 7781-7816.	1.9	839
10	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	1.9	714
11	An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmospheric Chemistry and Physics, 2006, 6, 1815-1834.	1.9	697
12	Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics, 2009, 9, 9001-9026.	1.9	585
13	A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements. Journals of the Atmospheric Sciences, 2002, 59, 398-413.	0.6	525
14	Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research, 2005, 110, .	3.3	499
15	Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	457
16	Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation. Environmental Modelling and Software, 2004, 19, 113-128.	1.9	429
17	Global air quality and climate. Chemical Society Reviews, 2012, 41, 6663.	18.7	428
18	Ocean primary production and climate: Global decadal changes. Geophysical Research Letters, 2003, 30,	1.5	321

#	Article	IF	CITATIONS
19	Assessment of the global impact of aerosols on tropospheric oxidants. Journal of Geophysical Research, 2005, 110, .	3.3	289
20	The GFDL Earth System Model Version 4.1 (GFDLâ€ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002015.	1.3	277
21	Intercontinental transport of pollution and dust aerosols: implications for regional air quality. Atmospheric Chemistry and Physics, 2007, 7, 5501-5517.	1.9	272
22	Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. Journal of Geophysical Research, 2003, 108, .	3.3	258
23	Structure and Performance of GFDL's CM4.0 Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 3691-3727.	1.3	242
24	Long-range transport of Saharan dust to northern Europe: The 11-16 October 2001 outbreak observed with EARLINET. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	229
25	The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment. Atmospheric Chemistry and Physics, 2007, 7, 4489-4501.	1.9	228
26	Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 3143-3169.	0.6	201
27	Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources. Journal of Geophysical Research, 2008, 113, .	3.3	189
28	Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. Journal of Geophysical Research, 2006, 111, .	3.3	187
29	The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies. Journal of Advances in Modeling Earth Systems, 2018, 10, 735-769.	1.3	185
30	Case study of a Chinese dust plume reaching the French Alps. Geophysical Research Letters, 2003, 30, .	1.5	182
31	Links between topography, wind, deflation, lakes and dust: The case of the Bodélé Depression, Chad. Geophysical Research Letters, 2006, 33, .	1.5	176
32	Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	174
33	Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. Journal of Geophysical Research, 2006, 111, .	3.3	171
34	Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. Journal of Geophysical Research, 2012, 117, .	3.3	170
35	Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and Sun photometer measurements. Journal of Geophysical Research, 2004, 109,	3.3	163
36	The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 1. Simulation Characteristics With Prescribed SSTs. Journal of Advances in Modeling Earth Systems, 2018, 10, 691-734.	1.3	155

#	Article	IF	CITATIONS
37	Retrieving global aerosol sources from satellites using inverse modeling. Atmospheric Chemistry and Physics, 2008, 8, 209-250.	1.9	138
38	Monitoring the impact of desert dust outbreaks for air quality for health studies. Environment International, 2019, 130, 104867.	4.8	134
39	Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data. Journal of Geophysical Research, 2010, 115, .	3.3	128
40	Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols?. Journal of Geophysical Research, 2007, 112, .	3.3	127
41	Uncertainty in Model Climate Sensitivity Traced to Representations of Cumulus Precipitation Microphysics. Journal of Climate, 2016, 29, 543-560.	1.2	109
42	Impact of preindustrial to presentâ€day changes in shortâ€lived pollutant emissions on atmospheric composition and climate forcing. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8086-8110.	1.2	103
43	A Comparison of Model- and Satellite-Derived Aerosol Optical Depth and Reflectivity. Journals of the Atmospheric Sciences, 2002, 59, 441-460.	0.6	96
44	AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmospheric Chemistry and Physics, 2021, 21, 87-128.	1.9	96
45	SPEAR: The Next Generation GFDL Modeling System for Seasonal to Multidecadal Prediction and Projection. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001895.	1.3	94
46	Modeling the Interactions between Aerosols and Liquid Water Clouds with a Self-Consistent Cloud Scheme in a General Circulation Model. Journals of the Atmospheric Sciences, 2007, 64, 1189-1209.	0.6	91
47	Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests. Atmospheric Chemistry and Physics, 2010, 10, 8037-8064.	1.9	87
48	Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth. Atmospheric Chemistry and Physics, 2016, 16, 1459-1477.	1.9	79
49	A global aerosol model forecast for the ACE-Asia field experiment. Journal of Geophysical Research, 2003, 108, .	3.3	78
50	The effect of the dynamic surface bareness on dust source function, emission, and distribution. Journal of Geophysical Research D: Atmospheres, 2013, 118, 871-886.	1.2	76
51	How reliable are CMIP5 models in simulating dust optical depth?. Atmospheric Chemistry and Physics, 2018, 18, 12491-12510.	1.9	70
52	Ocean Biogeochemistry in GFDL's Earth System Model 4.1 and Its Response to Increasing Atmospheric CO ₂ . Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002043.	1.3	70
53	Effects of nonsphericity on mineral dust modeling. Journal of Geophysical Research, 2003, 108, .	3.3	69
54	Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate. Journal of Geophysical Research, 2006, 111, .	3.3	68

#	Article	IF	CITATIONS
55	Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region. Geophysical Research Letters, 2003, 30, .	1.5	67
56	Empirical TOMS index for dust aerosol: Applications to model validation and source characterization. Journal of Geophysical Research, 2003, 108, .	3.3	65
57	Projection of American dustiness in the late 21st century due to climate change. Scientific Reports, 2017, 7, 5553.	1.6	61
58	Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO): An overview. Journal of Geophysical Research, 1999, 104, 30609-30624.	3.3	60
59	Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth. Atmospheric Environment, 2009, 43, 4327-4338.	1.9	59
60	Response of a coupled chemistry-climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone, and NOx. Geophysical Research Letters, 2005, 32, .	1.5	57
61	Changes in the aerosol direct radiative forcing from 2001 to 2015: observational constraints and regional mechanisms. Atmospheric Chemistry and Physics, 2018, 18, 13265-13281.	1.9	57
62	Radiative Forcing of Saharan Dust: GOCART Model Simulations Compared with ERBE Data. Journals of the Atmospheric Sciences, 2002, 59, 736-747.	0.6	56
63	Retrieving the composition and concentration of aerosols over the Indoâ€Gangetic basin using CALIOP and AERONET data. Geophysical Research Letters, 2009, 36, .	1.5	56
64	An empirically derived emission algorithm for windâ€blown dust. Journal of Geophysical Research, 2010, 115, .	3.3	55
65	Transport of Patagonian dust to Antarctica. Journal of Geophysical Research, 2010, 115, .	3.3	53
66	Do MODISâ€defined dust sources have a geomorphological signature?. Geophysical Research Letters, 2016, 43, 2606-2613.	1.5	53
67	Biogenic volatile organic compound emissions in central Africa during the Experiment for the Regional Sources and Sinks of Oxidants (EXPRESSO) biomass burning season. Journal of Geophysical Research, 1999, 104, 30659-30671.	3.3	52
68	The GFDL Global Atmospheric Chemistry limate Model AM4.1: Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002032.	1.3	51
69	Multivariate Probability Density Functions with Dynamics in the GFDL Atmospheric General Circulation Model: Global Tests. Journal of Climate, 2014, 27, 2087-2108.	1.2	50
70	CLUBB as a unified cloud parameterization: Opportunities and challenges. Geophysical Research Letters, 2015, 42, 4540-4547.	1.5	50
71	Exploring the relationship between surface PM _{2.5} and meteorology in Northern India. Atmospheric Chemistry and Physics, 2018, 18, 10157-10175.	1.9	50
72	Assessing boreal forest fire smoke aerosol impacts on U.S. air quality: A case study using multiple data sets. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	49

#	Article	IF	CITATIONS
73	Air quality impacts from the electrification of light-duty passenger vehicles in the United States. Atmospheric Environment, 2019, 208, 95-102.	1.9	48
74	Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty. Atmospheric Chemistry and Physics, 2021, 21, 3973-4005.	1.9	47
75	Direct radiative forcing of anthropogenic organic aerosol. Journal of Geophysical Research, 2005, 110,	3.3	45
76	Satelliteâ€based global volcanic SO ₂ emissions and sulfate direct radiative forcing during 2005–2012. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3446-3464.	1.2	45
77	The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria. Atmospheric Chemistry and Physics, 2016, 16, 13431-13448.	1.9	42
78	Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: Comparison with other measurements and utilization to evaluate GCM output. Journal of Geophysical Research, 2009, 114, .	3.3	39
79	Climateâ€vegetation interaction and amplification of Australian dust variability. Geophysical Research Letters, 2016, 43, 11,823.	1.5	39
80	Forecasting dust storms using the CARMA-dust model and MM5 weather data. Environmental Modelling and Software, 2004, 19, 129-140.	1.9	38
81	Development of high-resolution dynamic dust source function - A case study with a strong dust storm in a regional model. Atmospheric Environment, 2017, 159, 11-25.	1.9	38
82	Evaluation of climate model aerosol trends with ground-based observations over the last 2Âdecades – an AeroCom and CMIP6 analysis. Atmospheric Chemistry and Physics, 2020, 20, 13355-13378.	1.9	38
83	Direct Insertion of MODIS Radiances in a Clobal Aerosol Transport Model. Journals of the Atmospheric Sciences, 2007, 64, 808-827.	0.6	37
84	Mixing of dust and NH ₃ observed globally over anthropogenic dust sources. Atmospheric Chemistry and Physics, 2012, 12, 7351-7363.	1.9	37
85	The Climatological Effect of Saharan Dust on Global Tropical Cyclones in a Fully Coupled GCM. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5538-5559.	1.2	37
86	Photochemistry and budget of ozone during the Mauna Loa Observatory Photochemistry Experiment (MLOPEX 2). Journal of Geophysical Research, 1999, 104, 30275-30307.	3.3	36
87	Evaluation of tropical and extratropical Southern Hemisphere African aerosol properties simulated by a climate model. Journal of Geophysical Research, 2009, 114, .	3.3	36
88	Mineral dust cycle in the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (MONARCH) Version 2.0. Geoscientific Model Development, 2021, 14, 6403-6444.	1.3	35
89	Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability. Atmospheric Chemistry and Physics, 2021, 21, 13369-13395.	1.9	33
90	Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors. Journal of Geophysical Research, 2012, 117, .	3.3	30

PAUL A GINOUX

#	Article	IF	CITATIONS
91	The Response of the Tropical Atlantic and West African Climate to Saharan Dust in a Fully Coupled GCM. Journal of Climate, 2015, 28, 7071-7092.	1.2	30
92	Gasâ€aerosol partitioning of ammonia in biomass burning plumes: Implications for the interpretation of spaceborne observations of ammonia and the radiative forcing of ammonium nitrate. Geophysical Research Letters, 2017, 44, 8084-8093.	1.5	30
93	Global Emissions of Mineral Aerosol: Formulation and Validation using Satellite Imagery. Advances in Global Change Research, 2004, , 239-267.	1.6	30
94	Climatic factors contributing to long-term variations in surface fine dust concentration in the United States. Atmospheric Chemistry and Physics, 2018, 18, 4201-4215.	1.9	29
95	Aerosol absorption in global models from AeroCom phase III. Atmospheric Chemistry and Physics, 2021, 21, 15929-15947.	1.9	27
96	Warming or cooling dust?. Nature Geoscience, 2017, 10, 246-248.	5.4	26
97	The Earth Surface Mineral Dust Source Investigation: An Earth Science Imaging Spectroscopy Mission. , 2020, , .		26
98	Inferring ice formation processes from globalâ€scale black carbon profiles observed in the remote atmosphere and model simulations. Journal of Geophysical Research, 2012, 117, .	3.3	25
99	Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol. Journal of Geophysical Research, 2005, 110, .	3.3	23
100	Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL) Tj ETQq0 0 0	rg B.⊅ /Ove	rlo 2d 10 Tf 5(
101	Disproving the Bodélé Depression as the Primary Source of Dust Fertilizing the Amazon Rainforest. Geophysical Research Letters, 2020, 47, e2020GL088020.	1.5	21
102	Assessing the Influence of COVIDâ€19 on the Shortwave Radiative Fluxes Over the East Asian Marginal Seas. Geophysical Research Letters, 2021, 48, e2020GL091699.	1.5	20
103	Corrigendum to "Evaluation of black carbon estimations in global aerosol models" published in Atmos. Chem. Phys., 9, 9001-9026, 2009. Atmospheric Chemistry and Physics, 2010, 10, 79-81.	1.9	17
104	The Impacts of the Dust Radiative Effect on Vegetation Growth in the Sahel. Global Biogeochemical Cycles, 2019, 33, 1582-1593.	1.9	16
105	Mineral aerosol contamination of TIROS Operational Vertical Sounder (TOVS) temperature and moisture retrievals. Journal of Geophysical Research, 2003, 108, .	3.3	15
106	Toward understanding the dust deposition in Antarctica during the Last Glacial Maximum: Sensitivity studies on plausible causes. Journal of Geophysical Research, 2010, 115, .	3.3	15
107	Grid-independent high-resolution dust emissions (v1.0) for chemical transport models: application to GEOS-Chem (12.5.0). Geoscientific Model Development, 2021, 14, 4249-4260.	1.3	15
108	Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements. Atmospheric Chemistry and Physics, 2017, 17, 4451-4475.	1.9	14

#	Article	IF	CITATIONS
109	Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations. Atmospheric Chemistry and Physics, 2022, 22, 1395-1423.	1.9	13
110	Revisiting the Impact of Sea Salt on Climate Sensitivity. Geophysical Research Letters, 2020, 47, e2019GL085601.	1.5	12
111	Linear Relation Between Shifting ITCZ and Dust Hemispheric Asymmetry. Geophysical Research Letters, 2020, 47, e2020GL090499.	1.5	11
112	How well do aerosol retrievals from satellites and representation in global circulation models match ground-based AERONET aerosol statistics?. Advances in Global Change Research, 2001, , 103-158.	1.6	10
113	Seasonal Prediction Potential for Springtime Dustiness in the United States. Geophysical Research Letters, 2019, 46, 9163-9173.	1.5	8
114	Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations. Atmospheric Chemistry and Physics, 2021, 21, 8511-8530.	1.9	6
115	Toward Improved Cloud-Phase Simulation with a Mineral Dust and Temperature-Dependent Parameterization for Ice Nucleation in Mixed-Phase Clouds. Journals of the Atmospheric Sciences, 2019, 76, 3655-3667.	0.6	5
116	Oceanic and Atmospheric Drivers of Postâ€Elâ€Niño Chlorophyll Rebound in the Equatorial Pacific. Geophysical Research Letters, 2022, 49, .	1.5	5
117	The MONARCH high-resolution reanalysis of desert dust aerosol over Northern Africa, the Middle East and Europe (2007–2016). Earth System Science Data, 2022, 14, 2785-2816.	3.7	5
118	Understanding Topâ€ofâ€Atmosphere Flux Bias in the AeroCom Phase III Models: A Clearâ€Sky Perspective. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002584.	1.3	4
119	Space Observations of Dust in East Asia. , 2017, , 365-383.		2
120	Retrieving sources of fine aerosols from MODIS and AERONET observations by inverting GOCART model. , 2004, , .		1
121	Shutting down dust emission during the middle Holocene drought in the Sonoran Desert, Arizona, USA. Geology, 0, , .	2.0	1
122	Bitz, Ginoux, Jacobson, Nizkorodov, and Yang Receive 2013 Atmospheric Sciences Ascent Awards: Response. Eos, 2014, 95, 265-265.	0.1	0