
Kimberly A Dowd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8924451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resurfaced ZIKV EDIII nanoparticle immunogens elicit neutralizing and protective responses inÂvivo. Cell Chemical Biology, 2022, 29, 811-823.e7.	5.2	6
2	Functional Profiling of Antibody Immune Repertoires in Convalescent Zika Virus Disease Patients. Frontiers in Immunology, 2021, 12, 615102.	4.8	15
3	Limited Flavivirus Cross-Reactive Antibody Responses Elicited by a Zika Virus Deoxyribonucleic Acid Vaccine Candidate in Humans. Journal of Infectious Diseases, 2021, 224, 1550-1555.	4.0	5
4	Nonâ€structural protein 1â€specific antibodies directed against Zika virus in humans mediate antibodyâ€dependent cellular cytotoxicity. Immunology, 2021, 164, 386-397.	4.4	11
5	Dengue Virus Serotype 1 Conformational Dynamics Confers Virus Strain-Dependent Patterns of Neutralization by Polyclonal Sera. Journal of Virology, 2021, 95, e0095621.	3.4	8
6	Levels of Circulating NS1 Impact West Nile Virus Spread to the Brain. Journal of Virology, 2021, 95, e0084421.	3.4	13
7	Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host and Microbe, 2021, 29, 1634-1648.e5.	11.0	5
8	Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Science Advances, 2020, 6, eaba5068.	10.3	50
9	Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge. Journal of Experimental Medicine, 2020, 217, .	8.5	26
10	Nonhuman primates exposed to Zika virus in utero are not protected against reinfection at 1 year postpartum. Science Translational Medicine, 2020, 12, .	12.4	1
11	Distinct neutralizing antibody correlates of protection among related Zika virus vaccines identify a role for antibody quality. Science Translational Medicine, 2020, 12, .	12.4	30
12	Effect of a Chikungunya Virus–Like Particle Vaccine on Safety and Tolerability Outcomes. JAMA - Journal of the American Medical Association, 2020, 323, 1369.	7.4	68
13	Protective Efficacy of Nucleic Acid Vaccines Against Transmission of Zika Virus During Pregnancy in Mice. Journal of Infectious Diseases, 2019, 220, 1577-1588.	4.0	39
14	Simian Immunodeficiency Virus Infection of Rhesus Macaques Results in Delayed Zika Virus Clearance. MBio, 2019, 10, .	4.1	4
15	DNA vaccination before conception protects Zika virus–exposed pregnant macaques against prolonged viremia and improves fetal outcomes. Science Translational Medicine, 2019, 11, .	12.4	31
16	A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nature Microbiology, 2019, 4, 71-77.	13.3	25
17	Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet, The, 2018, 391, 552-562.	13.7	235
18	The Many Faces of a Dynamic Virion: Implications of Viral Breathing on Flavivirus Biology and Immunogenicity. Annual Review of Virology, 2018, 5, 185-207.	6.7	49

KIMBERLY A DOWD

#	Article	IF	CITATIONS
19	A VSV-based Zika virus vaccine protects mice from lethal challenge. Scientific Reports, 2018, 8, 11043.	3.3	63
20	Engineered Dengue Virus Domain III Proteins Elicit Cross-Neutralizing Antibody Responses in Mice. Journal of Virology, 2018, 92, .	3.4	42
21	Long-term clinical outcomes of Zika-associated Guillain-Barré syndrome. Emerging Microbes and Infections, 2018, 7, 1-4.	6.5	11
22	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	27.8	699
23	Modified mRNA Vaccines Protect against Zika Virus Infection. Cell, 2017, 168, 1114-1125.e10.	28.9	633
24	Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell, 2017, 170, 273-283.e12.	28.9	224
25	A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathogens, 2017, 13, e1006178.	4.7	69
26	Zika Virus Is Not Uniquely Stable at Physiological Temperatures Compared to Other Flaviviruses. MBio, 2016, 7, .	4.1	52
27	Rapid development of a DNA vaccine for Zika virus. Science, 2016, 354, 237-240.	12.6	348
28	Structural Basis of Zika Virus-Specific Antibody Protection. Cell, 2016, 166, 1016-1027.	28.9	325
29	Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype. Cell Reports, 2016, 16, 1485-1491.	6.4	190
30	A Virus-Like Particle Vaccine Elicits Broad Neutralizing Antibody Responses in Humans to All Chikungunya Virus Genotypes. Journal of Infectious Diseases, 2016, 214, 1487-1491.	4.0	51
31	Enhancing dengue virus maturation using a stable furin over-expressing cell line. Virology, 2016, 497, 33-40.	2.4	69
32	A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature, 2016, 535, 164-168.	27.8	327
33	Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly. Journal of Virology, 2015, 89, 8632-8642.	3.4	15
34	Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host. Virology, 2015, 479-480, 508-517.	2.4	103
35	CD4 ⁺ T-Cell–Dependent Reduction in Hepatitis C Virus–Specific Neutralizing Antibody Responses After Coinfection With Human Immunodeficiency Virus. Journal of Infectious Diseases, 2015, 212, 914-923.	4.0	18
36	Genotypic Differences in Dengue Virus Neutralization Are Explained by a Single Amino Acid Mutation That Modulates Virus Breathing. MBio, 2015, 6, e01559-15.	4.1	71

KIMBERLY A DOWD

#	Article	IF	CITATIONS
37	B Cell Response and Mechanisms of Antibody Protection to West Nile Virus. Viruses, 2014, 6, 1015-1036.	3.3	20
38	Potent Dengue Virus Neutralization by a Therapeutic Antibody with Low Monovalent Affinity Requires Bivalent Engagement. PLoS Pathogens, 2014, 10, e1004072.	4.7	51
39	Mechanism and Significance of Cell Type-Dependent Neutralization of Flaviviruses. Journal of Virology, 2014, 88, 7210-7220.	3.4	58
40	Combined Effects of the Structural Heterogeneity and Dynamics of Flaviviruses on Antibody Recognition. Journal of Virology, 2014, 88, 11726-11737.	3.4	91
41	Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet, The, 2014, 384, 2046-2052.	13.7	206
42	Pseudo-infectious Reporter Virus Particles for Measuring Antibody-Mediated Neutralization and Enhancement of Dengue Virus Infection. Methods in Molecular Biology, 2014, 1138, 75-97.	0.9	28
43	Impact of viral attachment factor expression on antibody-mediated neutralization of flaviviruses. Virology, 2013, 437, 20-27.	2.4	3
44	The Type-Specific Neutralizing Antibody Response Elicited by a Dengue Vaccine Candidate Is Focused on Two Amino Acids of the Envelope Protein. PLoS Pathogens, 2013, 9, e1003761.	4.7	34
45	Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus. PLoS Pathogens, 2013, 9, e1003312.	4.7	228
46	The Fc Region of an Antibody Impacts the Neutralization of West Nile Viruses in Different Maturation States. Journal of Virology, 2013, 87, 13729-13740.	3.4	17
47	Structural Basis of Differential Neutralization of DENV-1 Genotypes by an Antibody that Recognizes a Cryptic Epitope. PLoS Pathogens, 2012, 8, e1002930.	4.7	103
48	A Novel Approach for the Rapid Mutagenesis and Directed Evolution of the Structural Genes of West Nile Virus. Journal of Virology, 2012, 86, 3501-3512.	3.4	22
49	Complex phenotypes in mosquitoes and mice associated with neutralization escape of a Dengue virus type 1 monoclonal antibody. Virology, 2012, 427, 127-134.	2.4	6
50	Poorly Neutralizing Cross-Reactive Antibodies against the Fusion Loop of West Nile Virus Envelope Protein Protect <i>In Vivo</i> via Fcl̂ ³ Receptor and Complement-Dependent Effector Mechanisms. Journal of Virology, 2011, 85, 11567-11580.	3.4	110
51	Antibody-mediated neutralization of flaviviruses: A reductionist view. Virology, 2011, 411, 306-315.	2.4	170
52	The Infectivity of prM-Containing Partially Mature West Nile Virus Does Not Require the Activity of Cellular Furin-Like Proteases. Journal of Virology, 2011, 85, 12067-12072.	3.4	36
53	A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus. PLoS Pathogens, 2011, 7, e1002111.	4.7	134
54	Acceleration of Hepatitis C Virus Envelope Evolution in Humans Is Consistent with Progressive Humoral Immune Selection during the Transition from Acute to Chronic Infection. Journal of Virology, 2010, 84, 5067-5077.	3.4	70

KIMBERLY A DOWD

#	Article	IF	CITATIONS
55	Spontaneous Control of Primary Hepatitis C Virus Infection and Immunity Against Persistent Reinfection. Gastroenterology, 2010, 138, 315-324.	1.3	316
56	Hepatitis C Virus Infection of Neuroepithelioma Cell Lines. Gastroenterology, 2010, 139, 1365-1374.e2.	1.3	59
57	Structure and Function Analysis of Therapeutic Monoclonal Antibodies against Dengue Virus Type 2. Journal of Virology, 2010, 84, 9227-9239.	3.4	189
58	Selection Pressure From Neutralizing Antibodies Drives Sequence Evolution During Acute Infection With Hepatitis C Virus. Gastroenterology, 2009, 136, 2377-2386.	1.3	207
59	Maternal Neutralizing Antibody and Transmission of Hepatitis C Virus to Infants. Journal of Infectious Diseases, 2008, 198, 1651-1655.	4.0	25
60	High-Programmed Death-1 Levels on Hepatitis C Virus-Specific T Cells during Acute Infection Are Associated with Viral Persistence and Require Preservation of Cognate Antigen during Chronic Infection. Journal of Immunology, 2008, 181, 8215-8225.	0.8	114
61	Netrin Binds Discrete Subdomains of DCC and UNC5 and Mediates Interactions between DCC and Heparin. Journal of Biological Chemistry, 2003, 278, 32561-32568.	3.4	92