Jason Matthiopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8923523/publications.pdf

Version: 2024-02-01

94433 66911 6,913 113 37 78 citations g-index h-index papers 126 126 126 7149 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	State–space models of individual animal movement. Trends in Ecology and Evolution, 2008, 23, 87-94.	8.7	708
2	Building the bridge between animal movement and population dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2289-2301.	4.0	401
3	The home-range concept: are traditional estimators still relevant with modern telemetry technology?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2221-2231.	4.0	389
4	Estimating spaceâ€use and habitat preference from wildlife telemetry data. Ecography, 2008, 31, 140-160.	4.5	357
5	Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology, 2012, 93, 2336-2342.	3.2	311
6	The interpretation of habitat preference metrics under use–availability designs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2245-2254.	4.0	297
7	Correlation and studies of habitat selection: problem, red herring or opportunity?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2233-2244.	4.0	228
8	Comparative interpretation of count, presence–absence and point methods for species distribution models. Methods in Ecology and Evolution, 2012, 3, 177-187.	5.2	226
9	A general discreteâ€time modeling framework for animal movement using multistate random walks. Ecological Monographs, 2012, 82, 335-349.	5.4	222
10	Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Marine Ecology - Progress Series, 2009, 391, 165-182.	1.9	156
11	The use of space by animals as a function of accessibility and preference. Ecological Modelling, 2003, 159, 239-268.	2.5	136
12	Environmental Predictability as a Cause and Consequence of Animal Movement. Trends in Ecology and Evolution, 2020, 35, 163-174.	8.7	135
13	Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in domestic dogs and lions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1464-1469.	7.1	128
14	Modelling sperm whale habitat preference: a novel approach combining transect and follow data. Marine Ecology - Progress Series, 2011, 436, 257-272.	1.9	123
15	Habitat preference, accessibility, and competition limit the global distribution of breeding Black-browed Albatrosses. Ecological Monographs, 2011, 81, 141-167.	5.4	122
16	Metapopulation consequences of site fidelity for colonially breeding mammals and birds. Journal of Animal Ecology, 2005, 74, 716-727.	2.8	118
17	Generalized functional responses for species distributions. Ecology, 2011, 92, 583-589.	3.2	114
18	Establishing the link between habitat selection and animal population dynamics. Ecological Monographs, 2015, 85, 413-436.	5.4	111

#	Article	IF	Citations
19	Marine mammals trace anthropogenic structures at sea. Current Biology, 2014, 24, R638-R639.	3.9	104
20	†You shall not pass!': quantifying barrier permeability and proximity avoidance by animals. Journal of Animal Ecology, 2016, 85, 43-53.	2.8	92
21	Delayed mortality effects cut the malaria transmission potential of insecticide-resistant mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8975-8980.	7.1	89
22	Quantifying the effect of habitat availability on species distributions. Journal of Animal Ecology, 2013, 82, 1135-1145.	2.8	85
23	Overcoming the Data Crisis in Biodiversity Conservation. Trends in Ecology and Evolution, 2018, 33, 676-688.	8.7	85
24	COVID-19 – exploring the implications of long-term condition type and extent of multimorbidity on years of life lost: a modelling study. Wellcome Open Research, 2020, 5, 75.	1.8	85
25	The Functional Response of a Generalist Predator. PLoS ONE, 2010, 5, e10761.	2.5	84
26	Combining individual animal movement and ancillary biotelemetry data to investigate populationâ€level activity budgets. Ecology, 2013, 94, 838-849.	3.2	82
27	Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem?. Scientific Reports, 2016, 6, 21234.	3.3	73
28	Wind field and sex constrain the flight speeds of centralâ€place foraging albatrosses. Ecological Monographs, 2009, 79, 663-679.	5.4	69
29	Getting beneath the surface of marine mammal – fisheries competition. Mammal Review, 2008, 38, 167-188.	4.8	67
30	Using satellite telemetry and aerial counts to estimate space use by grey seals around the British Isles. Journal of Applied Ecology, 2004, 41, 476-491.	4.0	63
31	Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem. Biology Letters, 2016, 12, 20160024.	2.3	61
32	Avoidance of wind farms by harbour seals is limited to pile driving activities. Journal of Applied Ecology, 2016, 53, 1642-1652.	4.0	58
33	Intrinsic and extrinsic drivers of activity budgets in sympatric grey and harbour seals. Oikos, 2015, 124, 1462-1472.	2.7	54
34	Survival in macaroni penguins and the relative importance of different drivers: individual traits, predation pressure and environmental variability. Journal of Animal Ecology, 2014, 83, 1057-1067.	2.8	51
35	COVID-19 – exploring the implications of long-term condition type and extent of multimorbidity on years of life lost: a modelling study. Wellcome Open Research, 2020, 5, 75.	1.8	46
36	Patterns of space use in sympatric marine colonial predators reveal scales of spatial partitioning. Marine Ecology - Progress Series, 2015, 534, 235-249.	1.9	43

#	Article	IF	CITATIONS
37	Territorial behaviour and population dynamics in red grouse Lagopus lagopus scoticus. I. Population experiments. Journal of Animal Ecology, 2003, 72, 1073-1082.	2.8	42
38	Human–wildlife conflict, benefit sharing and the survival of lions in pastoralist communityâ€based conservancies. Journal of Applied Ecology, 2016, 53, 1195-1205.	4.0	42
39	1980s–2010s: The world's largest mangrove ecosystem is becoming homogeneous. Biological Conservation, 2019, 236, 79-91.	4.1	41
40	Variations in household microclimate affect outdoor-biting behaviour of malaria vectors. Wellcome Open Research, 2017, 2, 102.	1.8	39
41	Usedâ€habitat calibration plots: a new procedure for validating species distribution, resource selection, and stepâ€selection models. Ecography, 2018, 41, 737-752.	4.5	36
42	Linking resource selection and step selection models for habitat preferences in animals. Ecology, 2019, 100, e02452.	3.2	35
43	Defining the scale of habitat availability for models of habitat selection. Ecology, 2016, 97, 1113-1122.	3.2	34
44	Unravelling the relative roles of topâ€down and bottomâ€up forces driving population change in an oceanic predator. Ecology, 2016, 97, 1919-1928.	3.2	34
45	Harbour porpoise habitat preferences: robust spatio-temporal inferences from opportunistic data. Marine Ecology - Progress Series, 2012, 448, 155-170.	1.9	34
46	Model-supervised kernel smoothing for the estimation of spatial usage. Oikos, 2003, 102, 367-377.	2.7	31
47	Modelling prey consumption and switching by UK grey seals. ICES Journal of Marine Science, 2014, 71, 81-89.	2.5	31
48	PUPPING HABITAT USE IN THE MEDITERRANEAN MONK SEAL: A LONG-TERM STUDY. Marine Mammal Science, 2007, 23, 615-628.	1.8	29
49	Models of Red Grouse Cycles. A Family Affair?. Oikos, 1998, 82, 574.	2.7	28
50	Uncovering the links between foraging and breeding regions in a highly mobile mammal. Journal of Applied Ecology, 2013, 50, 499-509.	4.0	27
51	Modelling spatial biodiversity in the world's largest mangrove ecosystemâ€"The Bangladesh Sundarbans: A baseline for conservation. Diversity and Distributions, 2019, 25, 729-742.	4.1	27
52	Fitting Models of Multiple Hypotheses to Partial Population Data: Investigating the Causes of Cycles in Red Grouse. American Naturalist, 2009, 174, 399-412.	2.1	24
53	Habitat-mediated population limitation in a colonial central-place forager: the sky is not the limit for the black-browed albatross. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132883.	2.6	24
54	Fitness characteristics of the malaria vector Anopheles funestus during an attempted laboratory colonization. Malaria Journal, 2021, 20, 148.	2.3	23

#	Article	IF	CITATIONS
55	State-space modelling reveals proximate causes of harbour seal population declines. Oecologia, 2014, 174, 151-162.	2.0	22
56	Efficient abstracting of dive profiles using a brokenâ€stick model. Methods in Ecology and Evolution, 2015, 6, 278-288.	5.2	22
57	Predicting population change from models based on habitat availability and utilization. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182911.	2.6	22
58	Interspecific competition between resident and wintering birds: experimental evidence and consequences of coexistence. Ecology, 2021, 102, e03208.	3.2	22
59	Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso. Scientific Reports, 2021, 11 , 17569 .	3.3	22
60	Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso. Malaria Journal, 2019, 18, 386.	2.3	21
61	Global reconstruction of lifeâ€history strategies: A case study using tunas. Journal of Applied Ecology, 2019, 56, 855-865.	4.0	20
62	Territorial behaviour and population dynamics in red grouse Lagopus lagopus scoticus. II. Population models. Journal of Animal Ecology, 2003, 72, 1083-1096.	2.8	19
63	Seabirds maintain offspring provisioning rate despite fluctuations in prey abundance: a multiâ€species functional response for guillemots in the <scp>N</scp> orth <scp>S</scp> ea. Journal of Applied Ecology, 2013, 50, 1071-1079.	4.0	19
64	Indirect effects of primary prey population dynamics on alternative prey. Theoretical Population Biology, 2015, 103, 44-59.	1.1	19
65	Optimizing spatial and seasonal deployment of vaccination campaigns to eliminate wildlife rabies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180280.	4.0	19
66	Areal coverage of the ocean floor by the deep-sea elasipodid holothurian Oneirophanta mutabilis: estimates using systematic, random and directional search strategy simulations. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 477-486.	1.4	18
67	The generalized data management and collection protocol for Conductivity-Temperature-Depth Satellite Relay Data Loggers. Animal Biotelemetry, 2015, 3, .	1.9	18
68	Drivers of intrapopulation variation in resource use in a generalist predator, the macaroni penguin. Marine Ecology - Progress Series, 2016, 548, 233-247.	1.9	18
69	The kin-facilitation hypothesis for red grouse population cycles: territory sharing between relatives. Ecological Modelling, 2000, 127, 53-63.	2.5	17
70	Habitat selection of gray seals (<i>Halichoerus grypus</i>) in a marine protected area in France. Journal of Wildlife Management, 2015, 79, 1091-1100.	1.8	16
71	Minimal overlap between areas of high conservation priority for endangered Galapagos pinnipeds and the conservation zone of the Galapagos Marine Reserve. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 115-126.	2.0	16
72	The sensitivity of seabird populations to densityâ€dependence, environmental stochasticity and anthropogenic mortality. Journal of Applied Ecology, 2019, 56, 2118-2130.	4.0	16

#	Article	IF	CITATIONS
7 3	Solving the fourthâ€corner problem: forecasting ecosystem primary production from spatial multispecies traitâ€based models. Ecological Monographs, 2021, 91, e01454.	5.4	16
74	Age estimation, growth and age-related mortality of Mediterranean monk seals Monachus monachus. Endangered Species Research, 2012, 16, 149-163.	2.4	16
75	SOCIALLY INDUCED RED GROUSE POPULATION CYCLES NEED ABRUPT TRANSITIONS BETWEEN TOLERANCE AND AGGRESSION. Ecology, 2005, 86, 1883-1893.	3.2	14
76	SENSITIVITY TO ASSUMPTIONS IN MODELS OF GENERALIST PREDATION ON A CYCLIC PREY. Ecology, 2007, 88, 2576-2586.	3.2	14
77	Distance sampling for epidemiology: an interactive tool for estimating under-reporting of cases from clinic data. International Journal of Health Geographics, 2020, 19, 16.	2.5	14
78	The kin facilitation hypothesis for red grouse population cycles: territorial dynamics of the family cluster. Ecological Modelling, 2002, 147, 291-307.	2.5	13
79	Data Sampling Options for Animal-Borne Video Cameras: Considerations Based on Deployments with Antarctic Fur Seals. Marine Technology Society Journal, 2008, 42, 65-75.	0.4	13
80	Reâ€constructing nutritional history of Serengeti wildebeest from stable isotopes in tail hair: seasonal starvation patterns in an obligate grazer. Rapid Communications in Mass Spectrometry, 2016, 30, 1461-1468.	1.5	13
81	Inference of the drivers of collective movement in two cell types: <i>Dictyostelium</i> and melanoma. Journal of the Royal Society Interface, 2016, 13, 20160695.	3.4	13
82	Mesocosm experiments reveal the impact of mosquito control measures on malaria vector life history and population dynamics. Scientific Reports, 2018, 8, 13949.	3.3	13
83	Within Reach? Habitat Availability as a Function of Individual Mobility and Spatial Structuring. American Naturalist, 2020, 195, 1009-1026.	2.1	13
84	Achieving explanatory depth and spatial breadth in infectious disease modelling: Integrating active and passive case surveillance. Statistical Methods in Medical Research, 2020, 29, 1273-1287.	1.5	12
85	Lost in space? Searching for directions in the spatial modelling of individuals, populations and species ranges. Biology Letters, 2010, 6, 575-578.	2.3	11
86	Spatial variation in maximum dive depth in gray seals in relation to foraging. Marine Mammal Science, 2014, 30, 923-938.	1.8	11
87	Individual-Level Memory Is Sufficient to Create Spatial Segregation among Neighboring Colonies of Central Place Foragers. American Naturalist, 2021, 198, E37-E52.	2.1	11
88	Modelling the impact of hen harrier management measures on a red grouse population in the UK. Oikos, 2012, 121, 1061-1072.	2.7	10
89	Inference in MCMC step selection models. Biometrics, 2020, 76, 438-447.	1.4	10
90	Improving assessments of dataâ€limited populations using lifeâ€history theory. Journal of Applied Ecology, 2021, 58, 1225-1236.	4.0	10

#	Article	IF	CITATIONS
91	Widespread extinction debts and colonization credits in United States breeding bird communities. Nature Ecology and Evolution, 2022, 6, 324-331.	7.8	10
92	Hen harrier management: insights from demographic models fitted to population data. Journal of Applied Ecology, 2011, 48, 1187-1194.	4.0	9
93	Integrated modelling of seabirdâ€habitat associations from multiâ€platform data: A review. Journal of Applied Ecology, 2022, 59, 909-920.	4.0	9
94	Integrating habitat and partial survey data to estimate the regional population of a globally declining seabird species, the sooty shearwater. Global Ecology and Conservation, 2019, 17, e00554.	2.1	8
95	Communal and efficient movement routines can develop spontaneously through public information use. Behavioral Ecology, 2019, 30, 408-416.	2.2	8
96	Combining rapid antigen testing and syndromic surveillance improves community-based COVID-19 detection in a low-income country. Nature Communications, 2022, 13, .	12.8	7
97	Influence of the physical environment and conspecific aggression on the spatial arrangement of breeding grey seals. Ecological Informatics, 2007, 2, 308-317.	5.2	6
98	Changes in bodyweight and productivity in resource-restricted populations of red deer (Cervus) Tj ETQq0 0 0 rgBT 65, 1.	/Overlock 1.4	10 Tf 50 46 6
99	Local rabies transmission and regional spatial coupling in European foxes. PLoS ONE, 2020, 15, e0220592.	2.5	6
100	COVID-19 $\hat{a} \in ``exploring the implications of long-term condition type and extent of multimorbidity on years of life lost: a modelling study. Wellcome Open Research, 0, 5, 75.$	1.8	5
101	The summer distribution, habitat associations and abundance of seabirds in the sub-polar frontal zone of the Northwest Atlantic. Progress in Oceanography, 2021, 198, 102657.	3.2	5
102	Statistical Inference of The Mechanisms Driving Collective Cell Movement. Journal of the Royal Statistical Society Series C: Applied Statistics, 2017, 66, 869-890.	1.0	4
103	Nocturnal flight activity of northern gannets Morus bassanus and implications for modelling collision risk at offshore wind farms. Environmental Impact Assessment Review, 2018, 73, 1-6.	9.2	4
104	Migration quantified: constructing models and linking them with data., 2011,, 110-128.		4
105	Integration of mark $\hat{a} \in \hat{a}$ recapture and acoustic detections for unbiased population estimation in animal communities. Ecology, 2022, 103, .	3.2	4
106	Using Bayesian state-space models to understand the population dynamics of the dominant malaria vector, Anopheles funestus in rural Tanzania. Malaria Journal, 2022, 21, .	2.3	4
107	Sympatric Seals, Satellite Tracking and Protected Areas: Habitat-Based Distribution Estimates for Conservation and Management. Frontiers in Marine Science, 0, 9, .	2.5	4
108	Defining, estimating, and understanding the fundamental niches of complex animals in heterogeneous environments. Ecological Monographs, 0, , .	5.4	4

#	Article	IF	CITATIONS
109	Combining survey and remotely sensed environmental data to estimate the habitat associations, abundance and distribution of breeding thin-billed prions Pachyptila belcheri and Wilson's storm-petrels Oceanites oceanicus on a South Atlantic tussac island. Polar Biology, 2021, 44, 809-821.	1.2	3
110	Modelling and mapping how common guillemots balance their energy budgets over a full annual cycle. Functional Ecology, 2022, 36, 1612-1626.	3.6	2
111	The importance of developing modeling frameworks to inform conservation decisions: a response to Lonergan. Oecologia, 2014, 175, 1069-1071.	2.0	1
112	Use of stateâ€space modelling to identify ecological covariates associated with trends in pinniped demography. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 101-118.	2.0	1
113	A protocol for a longitudinal, observational cohort study of infection and exposure to zoonotic and vector-borne diseases across a land-use gradient in Sabah, Malaysian Borneo: a socio-ecological systems approach. Wellcome Open Research, 2022, 7, 63.	1.8	O