Laura Condon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8923517/publications.pdf Version: 2024-02-01

LAURA CONDON

#	Article	IF	CITATIONS
1	Connections between groundwater flow and transpiration partitioning. Science, 2016, 353, 377-380.	12.6	323
2	Hyper-resolution global hydrological modelling: what is next?. Hydrological Processes, 2015, 29, 310-320.	2.6	280
3	A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geoscientific Model Development, 2015, 8, 923-937.	3.6	215
4	Evapotranspiration depletes groundwater under warming over the contiguous United States. Nature Communications, 2020, 11, 873.	12.8	155
5	Evaluating the relationship between topography and groundwater using outputs from a continentalâ€scale integrated hydrology model. Water Resources Research, 2015, 51, 6602-6621.	4.2	120
6	The imprint of climate and geology on the residence times of groundwater. Geophysical Research Letters, 2016, 43, 701-708.	4.0	93
7	Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Science Advances, 2019, 5, eaav4574.	10.3	89
8	Mountainâ€Block Recharge: A Review of Current Understanding. Water Resources Research, 2019, 55, 8278-8304.	4.2	87
9	Implementation of a linear optimization water allocation algorithm into a fully integrated physical hydrology model. Advances in Water Resources, 2013, 60, 135-147.	3.8	71
10	Climate change and non-stationary flood risk for the upper Truckee River basin. Hydrology and Earth System Sciences, 2015, 19, 159-175.	4.9	65
11	Where Is the Bottom of a Watershed?. Water Resources Research, 2020, 56, e2019WR026010.	4.2	65
12	Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resources Research, 2021, 57, .	4.2	62
13	Simulating coupled surface–subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model. Geoscientific Model Development, 2020, 13, 1373-1397.	3.6	61
14	Feedbacks between managed irrigation and water availability: Diagnosing temporal and spatial patterns using an integrated hydrologic model. Water Resources Research, 2014, 50, 2600-2616.	4.2	60
15	Exploring source water mixing and transient residence time distributions of outflow and evapotranspiration with an integrated hydrologic model and Lagrangian particle tracking approach. Ecohydrology, 2019, 12, e2042.	2.4	39
16	GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geoscientific Model Development, 2021, 14, 7545-7571.	3.6	38
17	The impact of subsurface conceptualization on land energy fluxes. Advances in Water Resources, 2013, 60, 188-203.	3.8	37
18	Systematic shifts in Budyko relationships caused by groundwater storage changes. Hydrology and Earth System Sciences, 2017, 21, 1117-1135.	4.9	36

Laura Condon

#	Article	IF	CITATIONS
19	Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts. Environmental Research Letters, 2014, 9, 034009.	5.2	35
20	Bridging the gap between numerical solutions of travel time distributions and analytical storage selection functions. Hydrological Processes, 2018, 32, 1063-1076.	2.6	34
21	A Simple Framework for Incorporating Seasonal Streamflow Forecasts into Existing Water Resource Management Practices ¹ . Journal of the American Water Resources Association, 2010, 46, 574-585.	2.4	32
22	Continental Hydrologic Intercomparison Project, Phase 1: A Largeâ€6cale Hydrologic Model Comparison Over the Continental United States. Water Resources Research, 2021, 57, e2020WR028931.	4.2	27
23	Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States. Geoscientific Model Development, 2021, 14, 7223-7254.	3.6	20
24	Modified priority flood and global slope enforcement algorithm for topographic processing in physically based hydrologic modeling applications. Computers and Geosciences, 2019, 126, 73-83.	4.2	19
25	Monitoring turbidity from above: Deploying small unoccupied aerial vehicles to image inâ€stream turbidity. Hydrological Processes, 2019, 33, 1013-1021.	2.6	19
26	Simulating Groundwater‣treamflow Connections in the Upper Colorado River Basin. Ground Water, 2020, 58, 392-405.	1.3	19
27	Development of a Deep Learning Emulator for a Distributed Groundwater–Surface Water Model: ParFlow-ML. Water (Switzerland), 2021, 13, 3393.	2.7	18
28	Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm. Advances in Water Resources, 2015, 82, 106-123.	3.8	17
29	Water storage and release policies for all large reservoirs of conterminous United States. Journal of Hydrology, 2021, 603, 126843.	5.4	17
30	Drones in Geoscience Research: The Sky Is the Only Limit. Eos, 2018, 99, .	0.1	13
31	A Physics-Informed, Machine Learning Emulator of a 2D Surface Water Model: What Temporal Networks and Simulation-Based Inference Can Help Us Learn about Hydrologic Processes. Water (Switzerland), 2021, 13, 3633.	2.7	13
32	A hydrological simulation dataset of the Upper Colorado River Basin from 1983 to 2019. Scientific Data, 2022, 9, 16.	5.3	12
33	Evaluating the relative importance of precipitation, temperature and land-cover change in the hydrologic response to extreme meteorological drought conditions over the North American High Plains. Hydrology and Earth System Sciences, 2019, 23, 1931-1950.	4.9	11
34	Evaluating the Sensitivity of Projected Reservoir Reliability to theÂChoice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon. Water Resources Management, 2020, 34, 1991-2009.	3.9	11
35	A Mountainâ€Front Recharge Component Characterization Approach Combining Groundwater Age Distributions, Noble Gas Thermometry, and Fluid and Energy Transport Modeling. Water Resources Research, 2021, 57, .	4.2	11
36	Hyperâ€Resolution Continentalâ€Scale 3â€D Aquifer Parameterization for Groundwater Modeling. Water Resources Research, 2020, 56, e2019WR026004.	4.2	10

Laura Condon

#	Article	IF	CITATIONS
37	Sensitivity of Simulated Mountain Block Hydrology to Subsurface Conceptualization. Water Resources Research, 2020, 56, e2020WR027714.	4.2	9
38	A national topographic dataset for hydrological modeling over the contiguous United States. Earth System Science Data, 2021, 13, 3263-3279.	9.9	6
39	Sandtank-ML: An Educational Tool at the Interface of Hydrology and Machine Learning. Water (Switzerland), 2021, 13, 3328.	2.7	4
40	21st Century flood risk projections at select sites for the U.S. National Park Service. Climate Risk Management, 2020, 28, 100211.	3.2	2
41	Scalable Workflow-Driven Hydrologic Analysis in HydroFrame. Lecture Notes in Computer Science, 2020, , 276-289.	1.3	2
42	Enabling Al innovation via data and model sharing: An overview of the NSF Convergence Accelerator Track D. Al Magazine, 2022, 43, 93-104.	1.6	2