List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8923516/publications.pdf Version: 2024-02-01

REDNADD D RINKS

#	Article	IF	CITATIONS
1	Particles as surfactants—similarities and differences. Current Opinion in Colloid and Interface Science, 2002, 7, 21-41.	7.4	3,099
2	Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science, 2003, 100-102, 503-546.	14.7	1,998
3	Phase inversion of particle-stabilized materials from foams to dry water. Nature Materials, 2006, 5, 865-869.	27.5	585
4	Solid Wettability from Surface Energy Components: Relevance to Pickering Emulsions. Langmuir, 2002, 18, 1270-1273.	3.5	566
5	Aqueous Foams Stabilized Solely by Silica Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 3722-3725.	13.8	473
6	Synergistic Interaction in Emulsions Stabilized by a Mixture of Silica Nanoparticles and Cationic Surfactant. Langmuir, 2007, 23, 3626-3636.	3.5	402
7	Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions. Soft Matter, 2014, 10, 6941-6954.	2.7	305
8	Outstanding Stability of Particle-Stabilized Bubbles. Langmuir, 2003, 19, 3106-3108.	3.5	293
9	Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253, 105-115.	4.7	284
10	Silica Particle-Stabilized Emulsions of Silicone Oil and Water:  Aspects of Emulsification. Langmuir, 2004, 20, 1130-1137.	3.5	277
11	Particle-Stabilized Emulsions: A Bilayer or a Bridging Monolayer?. Angewandte Chemie - International Edition, 2006, 45, 773-776.	13.8	268
12	Synergistic Stabilization of Emulsions by a Mixture of Surface-Active Nanoparticles and Surfactant. Langmuir, 2007, 23, 1098-1106.	3.5	254
13	Highâ€Internalâ€Phase Pickering Emulsions Stabilized Solely by Peanutâ€Proteinâ€Isolate Microgel Particles with Multiple Potential Applications. Angewandte Chemie - International Edition, 2018, 57, 9274-9278.	13.8	249
14	Magnetic Pickering Emulsions Stabilized by Fe ₃ O ₄ Nanoparticles. Langmuir, 2011, 27, 3308-3316.	3.5	242
15	Origin of stabilisation of aqueous foams in nanoparticle–surfactant mixtures. Soft Matter, 2008, 4, 2373.	2.7	232
16	Enhanced Stabilization of Emulsions Due to Surfactant-Induced Nanoparticle Flocculation. Langmuir, 2007, 23, 7436-7439.	3.5	226
17	Compartmentalization of Incompatible Reagents within Pickering Emulsion Droplets for One-Pot Cascade Reactions. Journal of the American Chemical Society, 2015, 137, 1362-1371.	13.7	212
18	Inversion of Silica-Stabilized Emulsions Induced by Particle Concentration. Langmuir, 2005, 21, 3296-3302.	3.5	202

#	Article	IF	CITATIONS
19	Orderâ^'Disorder Transition in Monolayers of Modified Monodisperse Silica Particles at the Octaneâ^'Water Interface. Langmuir, 2003, 19, 2822-2829.	3.5	196
20	Temperature-Induced Inversion of Nanoparticle-Stabilized Emulsions. Angewandte Chemie - International Edition, 2005, 44, 4795-4798.	13.8	192
21	Colloidal Particles at a Range of Fluid–Fluid Interfaces. Langmuir, 2017, 33, 6947-6963.	3.5	188
22	Particle-stabilised foams: an interfacial study. Soft Matter, 2009, 5, 2215.	2.7	184
23	Compartmentalized Droplets for Continuous Flow Liquid–Liquid Interface Catalysis. Journal of the American Chemical Society, 2016, 138, 10173-10183.	13.7	178
24	Switchable Pickering Emulsions Stabilized by Silica Nanoparticles Hydrophobized In Situ with a Switchable Surfactant. Angewandte Chemie - International Edition, 2013, 52, 12373-12376.	13.8	160
25	Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles. Journal of Colloid and Interface Science, 2009, 335, 94-104.	9.4	158
26	Inversion of Emulsions Stabilized Solely by Ionizable Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 441-444.	13.8	155
27	Effects of pH and Salt Concentration on Oil-in-Water Emulsions Stabilized Solely by Nanocomposite Microgel Particles. Langmuir, 2006, 22, 2050-2057.	3.5	150
28	Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing. ACS Applied Materials & Interfaces, 2017, 9, 22950-22958.	8.0	145
29	Lightâ€Responsive, Reversible Emulsification and Demulsification of Oilâ€inâ€Water Pickering Emulsions for Catalysis. Angewandte Chemie - International Edition, 2021, 60, 3928-3933.	13.8	141
30	Double Inversion of Emulsions By Using Nanoparticles and a Di-Chain Surfactant. Angewandte Chemie - International Edition, 2007, 46, 5389-5392.	13.8	137
31	pH-Responsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with a Conventional Zwitterionic Surfactant. Langmuir, 2017, 33, 2296-2305.	3.5	135
32	Stimulus-Responsive Particulate Emulsifiers Based on Lightly Cross-Linked Poly(4-vinylpyridine)â^'Silica Nanocomposite Microgels. Langmuir, 2006, 22, 6818-6825.	3.5	132
33	Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium. Journal of the American Chemical Society, 2017, 139, 17387-17396.	13.7	130
34	Rheological Behavior of Water-in-Oil Emulsions Stabilized by Hydrophobic Bentonite Particles. Langmuir, 2005, 21, 5307-5316.	3.5	129
35	Self-Propulsion of Liquid Marbles: Leidenfrost-like Levitation Driven by Marangoni Flow. Journal of Physical Chemistry C, 2015, 119, 9910-9915.	3.1	127
36	Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles. Physical Chemistry Chemical Physics, 2007, 9, 6398.	2.8	126

#	Article	IF	CITATIONS
37	Design of Surfaceâ€Active Artificial Enzyme Particles to Stabilize Pickering Emulsions for Highâ€Performance Biphasic Biocatalysis. Advanced Materials, 2016, 28, 1682-1688.	21.0	121
38	Switchable Pickering Emulsions Stabilized by Silica Nanoparticles Hydrophobized <i>in Situ</i> with a Conventional Cationic Surfactant. Langmuir, 2015, 31, 3301-3307.	3.5	116
39	pH-Responsive Aqueous Foams Stabilized by Ionizable Latex Particles. Langmuir, 2007, 23, 8691-8694.	3.5	111
40	Switchable Opening and Closing of a Liquid Marble via Ultrasonic Levitation. Langmuir, 2015, 31, 11502-11507.	3.5	108
41	Novel Stabilization of Emulsions via the Heteroaggregation of Nanoparticles. Langmuir, 2008, 24, 4443-4446.	3.5	105
42	pH-Responsive Gas–Water–Solid Interface for Multiphase Catalysis. Journal of the American Chemical Society, 2015, 137, 15015-15025.	13.7	105
43	Structure and Stability of Silica Particle Monolayers at Horizontal and Vertical Octaneâ^Water Interfaces. Langmuir, 2005, 21, 7405-7412.	3.5	101
44	In vitro gene expression and enzyme catalysis in bio-inorganic protocells. Chemical Science, 2011, 2, 1739.	7.4	99
45	Adsorption of Charged Colloid Particles to Charged Liquid Surfaces. Langmuir, 2002, 18, 6946-6955.	3.5	98
46	Novel emulsions of ionic liquids stabilised solely by silica nanoparticles. Chemical Communications, 2003, , 2540.	4.1	96
47	Oil-in-oil emulsions stabilised solely by solid particles. Soft Matter, 2016, 12, 876-887.	2.7	94
48	Contact angles in relation to emulsions stabilised solely by silica nanoparticles including systems containing room temperature ionic liquids. Physical Chemistry Chemical Physics, 2007, 9, 6391.	2.8	85
49	Pickering Emulsions Responsive to CO ₂ /N ₂ and Light Dual Stimuli at Ambient Temperature. Langmuir, 2016, 32, 8668-8675.	3.5	84
50	Catalysis in Pickering emulsions. Soft Matter, 2020, 16, 10221-10243.	2.7	83
51	How Do Emulsions Evaporate?. Langmuir, 2002, 18, 3471-3475.	3.5	81
52	Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter, 2013, 9, 5067.	2.7	81
53	Novel Oilâ€inâ€Water Emulsions Stabilised by Ionic Surfactant and Similarly Charged Nanoparticles at Very Low Concentrations. Angewandte Chemie - International Edition, 2018, 57, 7738-7742	13.8	81
54	Effect of pH and Salt Concentration on the Phase Inversion of Particle-Stabilized Foams. Langmuir, 2007, 23, 9143-9146.	3.5	80

#	Article	IF	CITATIONS
55	Stabilization of Pickering Emulsions with Oppositely Charged Latex Particles: Influence of Various Parameters and Particle Arrangement around Droplets. Langmuir, 2015, 31, 11200-11208.	3.5	80
56	Thermoresponsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with Alkyl Polyoxyethylene Ether Nonionic Surfactant. Langmuir, 2017, 33, 5724-5733.	3.5	76
57	Facile preparation of bioactive nanoparticle/poly(Îμ-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions. Journal of Colloid and Interface Science, 2019, 545, 104-115.	9.4	76
58	Influence of the degree of fluorination on the behaviour of silica particles at air–oil surfaces. Soft Matter, 2013, 9, 834-845.	2.7	75
59	Phase inversion of particle-stabilised perfume oil–water emulsions: experiment and theory. Physical Chemistry Chemical Physics, 2010, 12, 11954.	2.8	74
60	Pickering emulsions stabilized by hydrophilic nanoparticles: in situ surface modification by oil. Soft Matter, 2016, 12, 6858-6867.	2.7	71
61	Light and Magnetic Dual-Responsive Pickering Emulsion Micro-Reactors. Langmuir, 2017, 33, 14139-14148.	3.5	71
62	Whipped oil stabilised by surfactant crystals. Chemical Science, 2016, 7, 2621-2632.	7.4	70
63	Biphasic biocatalysis using a CO ₂ -switchable Pickering emulsion. Green Chemistry, 2019, 21, 4062-4068.	9.0	70
64	Effect of particle hydrophobicity on the formation and collapse of fumed silica particle monolayers at the oil–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 377-386.	4.7	69
65	Capsules from Pickering emulsion templates. Current Opinion in Colloid and Interface Science, 2019, 44, 107-129.	7.4	69
66	Combinatorial microfluidic droplet engineering for biomimetic material synthesis. Science Advances, 2016, 2, e1600567.	10.3	67
67	Oil foams stabilised solely by particles. Soft Matter, 2011, 7, 1800-1808.	2.7	65
68	Surfactant Assembly within Pickering Emulsion Droplets for Fabrication of Interior‧tructured Mesoporous Carbon Microspheres. Angewandte Chemie - International Edition, 2018, 57, 10899-10904.	13.8	65
69	Effects of temperature on the partitioning and adsorption of C12E5in heptane–water mixtures. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3111-3115.	1.7	64
70	Pickering emulsion-enhanced interfacial biocatalysis: tailored alginate microparticles act as particulate emulsifier and enzyme carrier. Green Chemistry, 2019, 21, 2229-2233.	9.0	61
71	Influence of surfactant structure on the double inversion of emulsions in the presence of nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 345, 195-201.	4.7	57
72	Responsive Aqueous Foams Stabilized by Silica Nanoparticles Hydrophobized in Situ with a Conventional Surfactant. Langmuir, 2015, 31, 12937-12943.	3.5	57

#	Article	IF	CITATIONS
73	Dispersion Behavior and Aqueous Foams in Mixtures of a Vesicle-Forming Surfactant and Edible Nanoparticles. Langmuir, 2015, 31, 2967-2978.	3.5	56
74	Mechanical Compression to Characterize the Robustness of Liquid Marbles. Langmuir, 2015, 31, 11236-11242.	3.5	54
75	Temperature Insensitive Microemulsions. Langmuir, 1997, 13, 7030-7038.	3.5	53
76	Responsive aqueous foams stabilised by silica nanoparticles hydrophobised in situ with a switchable surfactant. Soft Matter, 2014, 10, 9739-9745.	2.7	53
77	Coalescence of electrically charged liquid marbles. Soft Matter, 2017, 13, 119-124.	2.7	53
78	Dry oil powders and oil foams stabilised by fluorinated clay platelet particles. Soft Matter, 2014, 10, 578-589.	2.7	52
79	Double oil-in-oil-in-oil emulsions stabilised solely by particles. Journal of Colloid and Interface Science, 2017, 488, 127-134.	9.4	52
80	An ellipsometry study of silica nanoparticle layers at the water surface. Physical Chemistry Chemical Physics, 2009, 11, 9522.	2.8	51
81	Surface-Active Hollow Titanosilicate Particles as a Pickering Interfacial Catalyst for Liquid-Phase Alkene Epoxidation Reactions. Langmuir, 2018, 34, 302-310.	3.5	50
82	Polymer–Protein Conjugate Particles with Biocatalytic Activity for Stabilization of Water-in-Water Emulsions. ACS Macro Letters, 2017, 6, 679-683.	4.8	49
83	Inducing drop to bubble transformation via resonance in ultrasound. Nature Communications, 2018, 9, 3546.	12.8	49
84	Selective Retardation of Perfume Oil Evaporation from Oil-in-Water Emulsions Stabilized by Either Surfactant or Nanoparticles. Langmuir, 2010, 26, 18024-18030.	3.5	48
85	Particle Stabilization of Oilâ€inâ€Waterâ€inâ€Air Materials: Powdered Emulsions. Advanced Materials, 2012, 24, 767-771.	21.0	47
86	Particles at Oil–Air Surfaces: Powdered Oil, Liquid Oil Marbles, and Oil Foam. ACS Applied Materials & Interfaces, 2015, 7, 14328-14337.	8.0	47
87	Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions. Nature Communications, 2022, 13, 475.	12.8	47
88	Chargeâ€Reversible Surfactantâ€Induced Transformation Between Oilâ€inâ€Dispersion Emulsions and Pickering Emulsions. Angewandte Chemie - International Edition, 2021, 60, 11793-11798.	13.8	46
89	Switchable Oil-in-Water Emulsions Stabilized by Like-Charged Surfactants and Particles at Very Low Concentrations. Langmuir, 2019, 35, 4058-4067.	3.5	45
90	Evaporation of Drops Containing Silica Nanoparticles of Varying Hydrophobicities: Exploiting Particle–Particle Interactions for Additive-Free Tunable Deposit Morphology. Langmuir, 2017, 33, 5025-5036.	3.5	44

#	Article	IF	CITATIONS
91	Sporopollenin capsules at fluid interfaces: particle-stabilised emulsions and liquid marbles. Soft Matter, 2011, 7, 4017.	2.7	43
92	Ultra-stable self-foaming oils. Food Research International, 2017, 95, 28-37.	6.2	43
93	CO ₂ /N ₂ triggered switchable Pickering emulsions stabilized by alumina nanoparticles in combination with a conventional anionic surfactant. RSC Advances, 2017, 7, 29742-29751.	3.6	42
94	Highâ€Internalâ€Phase Pickering Emulsions Stabilized Solely by Peanutâ€Proteinâ€Isolate Microgel Particles with Multiple Potential Applications. Angewandte Chemie, 2018, 130, 9418-9422.	2.0	42
95	Inversion of â€~dry water' to aqueous foam on addition of surfactant. Soft Matter, 2010, 6, 126-135.	2.7	41
96	Sequestration of edible oil from emulsions using new single and double layered microcapsules from plant spores. Journal of Materials Chemistry, 2012, 22, 9767.	6.7	41
97	Drop sizes and particle coverage in emulsions stabilised solely by silica nanoparticles of irregular shape. Physical Chemistry Chemical Physics, 2010, 12, 11967.	2.8	39
98	Converting Metal–Organic Framework Particles from Hydrophilic to Hydrophobic by an Interfacial Assembling Route. Langmuir, 2017, 33, 12427-12433.	3.5	39
99	Particle-stabilized oil foams. Advances in Colloid and Interface Science, 2021, 291, 102404.	14.7	39
100	Tumor microenvironment-responsive, high internal phase Pickering emulsions stabilized by lignin/chitosan oligosaccharide particles for synergistic cancer therapy. Journal of Colloid and Interface Science, 2021, 591, 352-362.	9.4	39
101	Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of <i>n</i> â€Octanaloxime in Pickering Emulsions. Angewandte Chemie - International Edition, 2021, 60, 1450-1457.	13.8	38
102	Pickering emulsions stabilized by coloured organic pigment particles. Chemical Science, 2017, 8, 708-723.	7.4	36
103	Cloud Points, solubilisation and interfacial tensions in systems containing nonionic surfactants. Journal of Chemical Technology and Biotechnology, 1990, 48, 161-171.	3.2	35
104	Particles adsorbed at various non-aqueous liquid-liquid interfaces. Advances in Colloid and Interface Science, 2017, 247, 208-222.	14.7	34
105	Highly stable and thermo-responsive gel foams by synergistically combining glycyrrhizic acid nanofibrils and cellulose nanocrystals. Journal of Colloid and Interface Science, 2021, 587, 797-809.	9.4	34
106	Highly Selective Catalysis at the Liquid–Liquid Interface Microregion. ACS Catalysis, 2021, 11, 1485-1494.	11.2	34
107	Compositional ripening of particle- and surfactant-stabilised emulsions: a comparison. Physical Chemistry Chemical Physics, 2010, 12, 2219.	2.8	33
108	Modeling the Interfacial Energy of Surfactant-Free Amphiphilic Janus Nanoparticles from Phase Inversion in Pickering Emulsions. Langmuir, 2018, 34, 1225-1233.	3.5	33

#	Article	IF	CITATIONS
109	Widely Adaptable Oilâ€inâ€Water Gel Emulsions Stabilized by an Amphiphilic Hydrogelator Derived from Dehydroabietic Acid. Angewandte Chemie - International Edition, 2020, 59, 637-641.	13.8	33
110	Responsive Photonic Liquid Marbles. Angewandte Chemie - International Edition, 2020, 59, 19260-19267.	13.8	33
111	Emulsion stabilisation by complexes of oppositely charged synthetic polyelectrolytes. Soft Matter, 2018, 14, 239-254.	2.7	32
112	Stabilisation of liquid–air surfaces by particles of low surface energy. Physical Chemistry Chemical Physics, 2010, 12, 9169.	2.8	31
113	Ultra-stable aqueous foams induced by interfacial co-assembly of highly hydrophobic particles and hydrophilic polymer. Journal of Colloid and Interface Science, 2020, 579, 628-636.	9.4	31
114	Behavior of Smart Surfactants in Stabilizing pHâ€Responsive Emulsions. Angewandte Chemie - International Edition, 2021, 60, 5235-5239.	13.8	31
115	3D printing of Pickering emulsion inks to construct poly(D,L-lactide-co-trimethylene carbonate)-based porous bioactive scaffolds with shape memory effect. Journal of Materials Science, 2021, 56, 731-745.	3.7	31
116	How polymer additives reduce the pour point of hydrocarbon solvents containing wax crystals. Physical Chemistry Chemical Physics, 2015, 17, 4107-4117.	2.8	30
117	Particle-Stabilized Powdered Water-in-Oil Emulsions. Langmuir, 2016, 32, 3110-3115.	3.5	30
118	Novel Oilâ€inâ€Water Emulsions Stabilised by Ionic Surfactant and Similarly Charged Nanoparticles at Very Low Concentrations. Angewandte Chemie, 2018, 130, 7864-7868.	2.0	30
119	Manufacture and properties of composite liquid marbles. Journal of Colloid and Interface Science, 2020, 575, 35-41.	9.4	30
120	Transition between a Pickering Emulsion and an Oil-in-Dispersion Emulsion Costabilized by Alumina Nanoparticles and a Cationic Surfactant. Langmuir, 2020, 36, 15543-15551.	3.5	30
121	Aqueous and Oil Foams Stabilized by Surfactant Crystals: New Concepts and Perspectives. Langmuir, 2021, 37, 4411-4418.	3.5	29
122	High internal phase Pickering emulsions. Current Opinion in Colloid and Interface Science, 2022, 57, 101556.	7.4	29
123	Influence of Propylene Clycol on Aqueous Silica Dispersions and Particle-Stabilized Emulsions. Langmuir, 2013, 29, 5723-5733.	3.5	28
124	Tunable shape transformation of freezing liquid water marbles. Soft Matter, 2014, 10, 1309-1314.	2.7	28
125	Foams of vegetable oils containing long-chain triglycerides. Journal of Colloid and Interface Science, 2021, 583, 522-534.	9.4	26
126	Shape evolution and bubble formation of acoustically levitated drops. Physical Review Fluids, 2018, 3, .	2.5	26

#	Article	IF	CITATIONS
127	Self-Propulsion of Water-Supported Liquid Marbles Filled with Sulfuric Acid. Journal of Physical Chemistry B, 2018, 122, 7936-7942.	2.6	25
128	Novel stabilisation of emulsions by soft particles: polyelectrolyte complexes. Faraday Discussions, 2016, 191, 255-285.	3.2	24
129	Van der Waals Emulsions: Emulsions Stabilized by Surfaceâ€Inactive, Hydrophilic Particles via van der Waals Attraction. Angewandte Chemie - International Edition, 2018, 57, 9510-9514.	13.8	24
130	A novel strategy to fabricate stable oil foams with sucrose ester surfactant. Journal of Colloid and Interface Science, 2021, 594, 204-216.	9.4	24
131	Controlled Actuation of Liquid Marbles on a Dielectric. ACS Applied Materials & Interfaces, 2018, 10, 34822-34827.	8.0	23
132	Synthesis of macroporous silica from solid-stabilised emulsion templates. Journal of Porous Materials, 2009, 16, 429-437.	2.6	22
133	Adsorption and Crystallization of Particles at the Air–Water Interface Induced by Minute Amounts of Surfactant. Langmuir, 2018, 34, 15526-15536.	3.5	22
134	Surfactant Assembly within Pickering Emulsion Droplets for Fabrication of Interiorâ€ 5 tructured Mesoporous Carbon Microspheres. Angewandte Chemie, 2018, 130, 11065-11070.	2.0	22
135	Phase Inversion of Silica Particle-Stabilized Water-in-Water Emulsions. Langmuir, 2019, 35, 4046-4057.	3.5	22
136	Lightâ€Responsive, Reversible Emulsification and Demulsification of Oilâ€inâ€Water Pickering Emulsions for Catalysis. Angewandte Chemie, 2021, 133, 3974-3979.	2.0	22
137	Three-Dimensionally Printed Bioinspired Superhydrophobic Packings for Oil-in-Water Emulsion Separation. Langmuir, 2019, 35, 12799-12806.	3.5	21
138	Growing a particle-stabilized aqueous foam. Journal of Colloid and Interface Science, 2020, 561, 127-135.	9.4	21
139	Formation of giant colloidosomes by transfer of pendant water drops coated with latex particles through an oil–water interface. Physical Chemistry Chemical Physics, 2004, 6, 4223-4225.	2.8	20
140	Multifunctional TiO ₂ â€Based Particles: The Effect of Fluorination Degree and Liquid Surface Tension on Wetting Behavior. Particle and Particle Systems Characterization, 2015, 32, 355-363.	2.3	20
141	Phase Inversion of Colored Pickering Emulsions Stabilized by Organic Pigment Particle Mixtures. Langmuir, 2018, 34, 5040-5051.	3.5	20
142	Fabrication of Hierarchical Macroporous ZIF-8 Monoliths Using High Internal Phase Pickering Emulsion Templates. Langmuir, 2021, 37, 8435-8444.	3.5	20
143	Cellular ceramics from emulsified suspensions of mixed particles. Journal of Porous Materials, 2012, 19, 859-867.	2.6	19
144	Pickering emulsions of alumina nanoparticles and bola-type selenium surfactant yield a fully recyclable aqueous phase. Green Chemistry, 2020, 22, 5470-5475.	9.0	19

#	Article	IF	CITATIONS
145	Aqueous Foams in the Presence of Surfactant Crystals. Langmuir, 2020, 36, 991-1002.	3.5	19
146	Superposition of Translational and Rotational Motions under Self-Propulsion of Liquid Marbles Filled with Aqueous Solutions of Camphor. Langmuir, 2017, 33, 13234-13241.	3.5	18
147	Emulsions Stabilized with Polyelectrolyte Complexes Prepared from a Mixture of a Weak and a Strong Polyelectrolyte. Langmuir, 2019, 35, 6693-6707.	3.5	18
148	Pickering Emulsions of Hydrophilic Silica Particles and Symmetrical Organic Electrolytes. Langmuir, 2020, 36, 4619-4629.	3.5	18
149	Particle film growth driven by foam bubble coalescence. Chemical Communications, 2006, , 3531.	4.1	17
150	Evaporation of Particle-Stabilized Emulsion Sunscreen Films. ACS Applied Materials & Interfaces, 2016, 8, 21201-21213.	8.0	17
151	Microemulsions Stabilized by Ionic/Nonionic Surfactant Mixtures. Effect of Partitioning of the Nonionic Surfactant into the Oil. Langmuir, 1998, 14, 5324-5326.	3.5	16
152	Evaporation of Sunscreen Films: How the UV Protection Properties Change. ACS Applied Materials & Interfaces, 2016, 8, 13270-13281.	8.0	16
153	Electrocoalescence of liquid marbles driven by embedded electrodes for triggering bioreactions. Lab on A Chip, 2019, 19, 3526-3534.	6.0	16
154	Stabilisation of oleofoams by lauric acid and its glycerol esters. Food Chemistry, 2022, 386, 132776.	8.2	16
155	Solubilisation of water in alkanes using nonionic surfactants. Journal of Chemical Technology and Biotechnology, 1992, 54, 231-236.	3.2	15
156	Double scaffold networks regulate edible Pickering emulsion gel for designing thermally actuated 4D printing. Food Hydrocolloids, 2022, 133, 107969.	10.7	15
157	Quantitative Prediction of the Reduction of Corrosion Inhibitor Effectiveness Due to Parasitic Adsorption onto a Competitor Surface. Langmuir, 2011, 27, 469-473.	3.5	14
158	Responsive Photonic Liquid Marbles. Angewandte Chemie, 2020, 132, 19422-19429.	2.0	14
159	Composite Liquid Marbles as a Macroscopic Model System Representing Shedding of Enveloped Viruses. Journal of Physical Chemistry Letters, 2020, 11, 4279-4285.	4.6	13
160	Conversion of bile salts from inferior emulsifier to efficient smart emulsifier assisted by negatively charged nanoparticles at low concentrations. Chemical Science, 2021, 12, 11845-11850.	7.4	12
161	Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry. Beilstein Journal of Organic Chemistry, 2018, 14, 648-658.	2.2	11
162	Lipase-Immobilized Cellulosic Capsules with Water Absorbency for Enhanced Pickering Interfacial Biocatalysis. Langmuir, 2021, 37, 810-819.	3.5	11

#	Article	IF	CITATIONS
163	Water-in-oil Pickering emulsions stabilized by edible surfactant crystals formed in situ. Food Hydrocolloids, 2022, 125, 107394.	10.7	11
164	Stability of Clay Particle-Coated Microbubbles in Alkanes against Dissolution Induced by Heating. Langmuir, 2017, 33, 3809-3817.	3.5	9
165	Behavior of Smart Surfactants in Stabilizing pHâ€Responsive Emulsions. Angewandte Chemie, 2021, 133, 5295-5299.	2.0	9
166	Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of <i>n</i> â€Octanaloxime in Pickering Emulsions. Angewandte Chemie, 2021, 133, 1470-1477.	2.0	9
167	Chargeâ€Reversible Surfactantâ€Induced Transformation Between Oilâ€inâ€Dispersion Emulsions and Pickering Emulsions. Angewandte Chemie, 2021, 133, 11899-11904.	2.0	9
168	Oil-in-Water emulsions stabilized by alumina nanoparticles with organic electrolytes: Fate of particles. Journal of Colloid and Interface Science, 2022, 627, 749-760.	9.4	9
169	Liquid Marble-Induced Dewetting. Journal of Physical Chemistry C, 2020, 124, 9345-9349.	3.1	8
170	High internal phase emulsions stabilized by adsorbed sucrose stearate molecules and dispersed vesicles. Food Hydrocolloids, 2021, 121, 107002.	10.7	8
171	Widely Adaptable Oilâ€inâ€Water Gel Emulsions Stabilized by an Amphiphilic Hydrogelator Derived from Dehydroabietic Acid. Angewandte Chemie, 2020, 132, 647-651.	2.0	7
172	Liquid marbles as microreactors for qualitative and quantitative inorganic analyses. SN Applied Sciences, 2020, 2, 1.	2.9	7
173	Effects of particle size on the electrocoalescence dynamics and arrested morphology of liquid marbles. Journal of Colloid and Interface Science, 2022, 608, 1094-1104.	9.4	7
174	Quantifying Surface Properties of Silica Particles by Combining Hansen Parameters and Reichardt's Dye Indicator Data. Particle and Particle Systems Characterization, 2018, 35, 1800328.	2.3	6
175	Cherenkov-Like Surface Thermal Waves Emerging from Self-Propulsion of a Liquid Marble. Journal of Physical Chemistry B, 2020, 124, 695-699.	2.6	6
176	Van der Waals Emulsions: Emulsions Stabilized by Surfaceâ€Inactive, Hydrophilic Particles via van der Waals Attraction. Angewandte Chemie, 2018, 130, 9654-9658.	2.0	6
177	Membrane Permeation of Testosterone from Either Solutions, Particle Dispersions, or Particle-Stabilized Emulsions. Langmuir, 2012, 28, 2510-2522.	3.5	5
178	Multiple Pickering emulsions stabilized by organic pigment particles: properties and ion release. Journal of Dispersion Science and Technology, 2022, 43, 1291-1304.	2.4	5
179	Spontaneous particle desorption and "Gorgon―drop formation from particle-armored oil drops upon cooling. Soft Matter, 2020, 16, 2480-2496.	2.7	5
180	Organic pigment particle-stabilized Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126044.	4.7	5

#	Article	IF	CITATIONS
181	Pickering Emulsions Stabilized by Polystyrene Particles Possessing Different Surface Groups. Langmuir, 2022, 38, 1079-1089.	3.5	5
182	Recyclable and re-usable smart surfactant for stabilization of various multi-responsive emulsions alone or with nanoparticles. Soft Matter, 2022, 18, 849-858.	2.7	5
183	Buckling versus Crystal Expulsion Controlled by Deformation Rate of Particle-Coated Air Bubbles in Oil. Langmuir, 2022, 38, 1259-1265.	3.5	5
184	Water-in-oil high internal phase Pickering emulsions formed by spontaneous interfacial hydrolysis of monomer oil. Journal of Colloid and Interface Science, 2022, 623, 476-486.	9.4	4
185	Foaming honey: particle or molecular foaming agent?. Journal of Dispersion Science and Technology, 2022, 43, 848-858.	2.4	3
186	Various crust morphologies of colloidal droplets dried on a super-hydrophobic surface. Canadian Journal of Physics, 2020, 98, 1055-1059.	1.1	3
187	How membrane permeation is affected by donor delivery solvent. Physical Chemistry Chemical Physics, 2012, 14, 15525.	2.8	2
188	Levitating clusters of fluorinated fumed silica nanoparticles enable manufacture of liquid marbles: Co-occurrence of interfacial, thermal and electrostatic events. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129453.	4.7	2
189	Spectrophotometry of Thin Films of Light-Absorbing Particles. Langmuir, 2017, 33, 3720-3730.	3.5	1