
MarÃ-a Victoria Busi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MADS-box genes expressed during tomato seed and fruit development. Plant Molecular Biology, 2003, 52, 801-815.	3.9	144
2	Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress. Plant Journal, 2006, 48, 873-882.	5.7	97
3	Metabolomics in Plants and Humans: Applications in the Prevention and Diagnosis of Diseases. BioMed Research International, 2013, 2013, 1-11.	1.9	76
4	Starch metabolism in green algae. Starch/Staerke, 2014, 66, 28-40.	2.1	73
5	Role of the N-Terminal Starch-Binding Domains in the Kinetic Properties of Starch Synthase III from <i>Arabidopsis thaliana</i> . Biochemistry, 2008, 47, 3026-3032.	2.5	66
6	Functional and molecular characterization of the frataxin homolog fromArabidopsis thaliana,. FEBS Letters, 2004, 576, 141-144.	2.8	56
7	Effect of Mitochondrial Dysfunction on Carbon Metabolism and Gene Expression in Flower Tissues of Arabidopsis thaliana. Molecular Plant, 2011, 4, 127-143.	8.3	48
8	Functional and structural characterization of the catalytic domain of the starch synthase III from <i>Arabidopsis thaliana</i> . Proteins: Structure, Function and Bioinformatics, 2008, 70, 31-40.	2.6	42
9	The starchâ€binding capacity of the noncatalytic SBD2 region and the interaction between the N―and Câ€ŧerminal domains are involved in the modulation of the activity of starch synthase Ill from <i>Arabidopsis thaliana</i> . FEBS Journal, 2010, 277, 428-440.	4.7	42
10	A mitochondrial dysfunction induces the expression of nuclear-encoded complex I genes in engineered male sterile Arabidopsis thaliana. FEBS Letters, 2002, 532, 70-74.	2.8	38
11	The mitochondrial protein frataxin is essential for heme biosynthesis in plants. FEBS Journal, 2011, 278, 470-481.	4.7	37
12	Exploring frataxin function. IUBMB Life, 2012, 64, 56-63.	3.4	37
13	Structural and Functional Studies of the Mitochondrial Cysteine Desulfurase from Arabidopsis thaliana. Molecular Plant, 2012, 5, 1001-1010.	8.3	36
14	Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis. PLoS ONE, 2015, 10, e0141443.	2.5	36
15	Starch-synthase III family encodes a tandem of three starch-binding domains. Proteins: Structure, Function and Bioinformatics, 2006, 65, 27-31.	2.6	35
16	The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana. International Journal of Biochemistry and Cell Biology, 2016, 70, 48-56.	2.8	27
17	The mitochondrial proteins AtHscB and AtIsu1 involved in Fe–S cluster assembly interact with the Hsp70-type chaperon AtHscA2 and modulate its catalytic activity. Mitochondrion, 2014, 19, 375-381.	3.4	21
18	Expression and one-step purification of recombinant Arabidopsis thaliana frataxin homolog (AtFH). Protein Expression and Purification, 2007, 51, 157-161.	1.3	20

#	Article	IF	CITATIONS
19	An enzyme-coupled continuous spectrophotometric assay for glycogen synthases. Molecular Biology Reports, 2012, 39, 585-591.	2.3	18
20	Ferrochelatase activity of plant frataxin. Biochimie, 2019, 156, 118-122.	2.6	17
21	Polysaccharide-synthesizing Glycosyltransferases and Carbohydrate Binding Modules: the case of Starch Synthase III. Protein and Peptide Letters, 2013, 20, 856-863.	0.9	17
22	Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana. Biochimie, 2016, 123, 85-94.	2.6	16
23	Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms. BMC Research Notes, 2015, 8, 613.	1.4	15
24	Preferential binding of SBD from <i>Arabidopsis thaliana</i> SSIII to polysaccharides: Study of amino acid residues involved. Starch/Staerke, 2011, 63, 451-460.	2.1	14
25	Altered levels of AtHSCB disrupts iron translocation from roots to shoots. Plant Molecular Biology, 2016, 92, 613-628.	3.9	14
26	Plant Frataxin in Metal Metabolism. Frontiers in Plant Science, 2018, 9, 1706.	3.6	13
27	The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties. Plant Molecular Biology, 2017, 93, 121-135.	3.9	12
28	Characterization of the Arabidopsis thaliana E3 Ubiquitin-Ligase AtSINAL7 and Identification of the Ubiquitination Sites. PLoS ONE, 2013, 8, e73104.	2.5	11
29	Identification and characterization of a novel starch branching enzyme from the picoalgae Ostreococcus tauri. Archives of Biochemistry and Biophysics, 2017, 618, 52-61.	3.0	11
30	Identification of two frataxin isoforms in Zea mays : Structural and functional studies. Biochimie, 2017, 140, 34-47.	2.6	11
31	Altered levels of mitochondrial NFS1 affect cellular Fe and S contents in plants. Plant Cell Reports, 2019, 38, 981-990.	5.6	11
32	Nuclear-encoded mitochondrial complex I gene expression is restored toÂnormal levels byÂinhibition ofÂunedited ATP9 transgene expression inÀArabidopsisÂthaliana. Plant Physiology and Biochemistry, 2006, 44, 1-6.	5.8	10
33	Identification of a novel starch synthase III from the picoalgae Ostreococcus tauri. Biochimie, 2017, 133, 37-44.	2.6	10
34	Starch Synthesis in Ostreococcus tauri: The Starch-Binding Domains of Starch Synthase III-B Are Essential for Catalytic Activity. Frontiers in Plant Science, 2018, 9, 1541.	3.6	9
35	Over-expression of SINAL7 increases biomass and drought tolerance, and also delays senescence in Arabidopsis. Journal of Biotechnology, 2018, 283, 11-21.	3.8	9
36	Iron-Sulfur Cluster Complex Assembly in the Mitochondria of Arabidopsis thaliana. Plants, 2020, 9, 1171.	3.5	8

MarÃa Victoria Busi

#	Article	IF	CITATIONS
37	Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs). Biochimie, 2013, 95, 1865-1870.	2.6	7
38	Mitochondrial dysfunction affects chloroplast functions. Plant Signaling and Behavior, 2011, 6, 1904-1907.	2.4	6
39	Characterization of SdCA, a cold-adapted glucoamylase from Saccharophagus degradans. Biotechnology Reports (Amsterdam, Netherlands), 2021, 30, e00625.	4.4	6
40	CBM20CP, a novel functional protein of starch metabolism in green algae. Plant Molecular Biology, 2022, 108, 363-378.	3.9	6
41	Identification and analysis of OsttaDSP, a phosphoglucan phosphatase from Ostreococcus tauri. PLoS ONE, 2018, 13, e0191621.	2.5	5
42	Fe-S Protein Synthesis in Green Algae Mitochondria. Plants, 2021, 10, 200.	3.5	4
43	Starch Metabolism in Green Plants. , 2015, , 329-376.		4
44	A simple method for the addition of rotenone in <i>Arabidopsis thaliana</i> leaves. Plant Signaling and Behavior, 2015, 10, e1073871.	2.4	2
45	Development of fast and simple chromogenic methods for glucan phosphatases in-gel activity assays. Analytical Biochemistry, 2017, 517, 36-39.	2.4	2
46	Identification and characterization of ChlreSEX4, a novel glucan phosphatase from Chlamydomonas reinhardtii green alga. Archives of Biochemistry and Biophysics, 2020, 680, 108235.	3.0	1
47	Starch Metabolism in Green Plants. , 2014, , 1-42.		1
48	Molecular basis of clinical metabolomics. , 2020, , 47-55.		0
49	Interaction Between Plant Secondary Metabolites and the Human Metabolome. , 2021, , 526-531.		Ο
50	Drugs for the Treatment of Mitochondrial Diseases. Current Chemical Biology, 2019, 13, 19-24.	0.5	0
51	Functional and Structural Characterization of a Novel Isoamylase from Ostreococcus tauri and Role of the N-Terminal Domain. Open Biotechnology Journal, 2020, 14, 1-11.	1.2	Ο