Lei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922954/publications.pdf

Version: 2024-02-01

233421 279798 2,078 47 23 45 citations h-index g-index papers 47 47 47 2222 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Zwitterionic peptide-functionalized highly dispersed carbon nanotubes for efficient wastewater treatment. Journal of Materials Chemistry B, 2022, 10, 2661-2669.	5.8	3
2	A Degradable-Renewable Ionic Skin Based on Edible Glutinous Rice Gel. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5122-5133.	8.0	17
3	Environment-Resistant Organohydrogel-Based Sensor Enables Highly Sensitive Strain, Temperature, and Humidity Responses. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23692-23700.	8.0	27
4	A Humidity-Powered Soft Robot with Fast Rolling Locomotion. Research, 2022, 2022, .	5.7	14
5	Development of Organogels for Live <i>Yarrowia lipolytica</i> Encapsulation. Journal of the American Chemical Society, 2022, 144, 10251-10258.	13.7	7
6	Cellâ€friendly regulation of ice crystals by antifreeze organismâ€inspired materials. AICHE Journal, 2022, 68, .	3.6	10
7	A polyvinylpyrrolidone-based surface-active copolymer for an effective marine antifouling coating. Progress in Organic Coatings, 2021, 150, 105975.	3.9	22
8	Cellular Engineering and Biocatalysis Strategies toward Sustainable Cadaverine Production: State of the Art and Perspectives. ACS Sustainable Chemistry and Engineering, 2021, 9, 1061-1072.	6.7	15
9	Universal Intraductal Surface Antifouling Coating Based on an Amphiphilic Copolymer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21051-21059.	8.0	19
10	Design of a Thiol-Responsive, Traceless Prodrug with Rapid Self-Immolation for Cancer Chemotherapy. ACS Applied Bio Materials, 2021, 4, 4982-4989.	4.6	11
11	A Bifunctional Zwitterionâ€Modified Porphyrin for Photodynamic Nondestructive Tooth Whitening and Biofilm Eradication. Advanced Functional Materials, 2021, 31, 2104799.	14.9	33
12	2D Black Phosphorus-Based Cytomembrane Mimics with Stimuli-Responsive Antibacterial Action Inspired by Endotoxin-Associated Toxic Behavior. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43820-43829.	8.0	3
13	Proâ∈Healing Zwitterionic Skin Sensor Enables Multiâ∈Indicator Distinction and Continuous Realâ∈Time Monitoring. Advanced Functional Materials, 2021, 31, 2106406.	14.9	72
14	Antifouling Fibrous Membrane Enables High Efficiency and High-Flux Microfiltration for Water Treatment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49254-49265.	8.0	11
15	A Multifunctional Proâ€Healing Zwitterionic Hydrogel for Simultaneous Optical Monitoring of pH and Glucose in Diabetic Wound Treatment. Advanced Functional Materials, 2020, 30, 1905493.	14.9	248
16	Size-Dependent Uptake and Distribution of AgNPs by Silkworms. ACS Sustainable Chemistry and Engineering, 2020, 8, 460-468.	6.7	11
17	Zwitterionic Osmolyteâ€Based Hydrogels with Antifreezing Property, High Conductivity, and Stable Flexibility at Subzero Temperature. Advanced Functional Materials, 2020, 30, 1907986.	14.9	201
18	A near-infrared light-mediated antimicrobial based on Ag/Ti ₃ C ₂ T _x for effective synergetic antibacterial applications. Nanoscale, 2020, 12, 19129-19141.	5.6	69

#	Article	IF	Citations
19	A zwitterionic hydrogel coated titanium surface with high-efficiency endothelial cell selectivity for rapid re-endothelialization. Biomaterials Science, 2020, 8, 5441-5451.	5.4	16
20	Amphiphilic Marine Antifouling Coatings Based on a Hydrophilic Polyvinylpyrrolidone and Hydrophobic Fluorine–Silicon-Containing Block Copolymer. Langmuir, 2020, 36, 14573-14581.	3.5	49
21	Metal–Organic Framework Traps with Record-High Bilirubin Removal Capacity for Hemoperfusion Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25546-25556.	8.0	36
22	MOF-Based Antibiofouling Hemoadsorbent for Highly Efficient Removal of Protein-Bound Bilirubin. Langmuir, 2020, 36, 8753-8763.	3.5	20
23	Influence of divalent cations on the biofouling behaviors of alginate hydrogels. Biomedical Materials (Bristol), 2020, 15, 015003.	3.3	7
24	Controlled Engineering of Nano-Povidones for Efficient Iodine Recovery and Antibacterial Reutilization. ACS Sustainable Chemistry and Engineering, 2020, 8, 11704-11712.	6.7	10
25	Environmentally Friendly Marine Antifouling Coating Based on a Synergistic Strategy. Langmuir, 2020, 36, 2396-2402.	3.5	46
26	Universally autonomous self-healing elastomer with high stretchability. Nature Communications, 2020, 11, 2037.	12.8	300
27	Beetle-Inspired Hierarchical Antibacterial Interface for Reliable Fog Harvesting. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 34330-34337.	8.0	70
28	A hemocompatible cryoprotectant inspired by freezing-tolerant plants. Colloids and Surfaces B: Biointerfaces, 2019, 176, 106-114.	5.0	14
29	DMSO-free cryopreservation of chondrocytes based on zwitterionic molecule and polymers. Biomacromolecules, 2019, 20, 3980-3988.	5.4	22
30	Reusable ternary PVA films containing bacterial cellulose fibers and $\hat{l}\mu$ -polylysine with improved mechanical and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110486.	5.0	38
31	Bioinspired Multifunctional Protein Coating for Antifogging, Self-Cleaning, and Antimicrobial Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24504-24511.	8.0	65
32	In Situ Encapsulation of Postcryopreserved Cells Using Alginate Polymer and Zwitterionic Betaine. ACS Biomaterials Science and Engineering, 2019, 5, 2621-2630.	5.2	16
33	A Robust Cotton Textile-Based Material for High-Flux Oil–Water Separation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13704-13713.	8.0	125
34	Novel Mussel-Inspired Universal Surface Functionalization Strategy: Protein-Based Coating with Residue-Specific Post-Translational Modification in Vivo. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12846-12853.	8.0	28
35	Nanoliposomal multi-drug delivery system with reduced toxicity and multi-drug resistance. Journal of Materials Science, 2019, 54, 9718-9728.	3.7	11
36	Rapid and Longâ€Term Glycemic Regulation with a Balanced Charged Immuneâ€Evasive Hydrogel in T1DM Mice. Advanced Functional Materials, 2019, 29, 1900140.	14.9	24

#	Article	IF	CITATION
37	Encapsulation of AgNPs within Zwitterionic Hydrogels for Highly Efficient and Antifouling Catalysis in Biological Environments. Langmuir, 2019, 35, 1563-1570.	3.5	17
38	Betaine Combined with Membrane Stabilizers Enables Solvent-Free Whole Blood Cryopreservation and One-Step Cryoprotectant Removal. ACS Biomaterials Science and Engineering, 2019, 5, 1083-1091.	5.2	31
39	Novel Balanced Charged Alginate/PEI Polyelectrolyte Hydrogel that Resists Foreign-Body Reaction. ACS Applied Materials & Interfaces, 2018, 10, 6879-6886.	8.0	72
40	Precisionâ€porous templated scaffolds of varying pore size drive dendritic cell activation. Biotechnology and Bioengineering, 2018, 115, 1086-1095.	3.3	27
41	A mussel-inspired chimeric protein as a novel facile antifouling coating. Chemical Communications, 2018, 54, 11328-11331.	4.1	35
42	Encapsulation of laccase within zwitterionic poly-carboxybetaine hydrogels for improved activity and stability. Catalysis Science and Technology, 2018, 8, 5217-5224.	4.1	11
43	A comprehensive study and comparison of four types of zwitterionic hydrogels. Journal of Materials Science, 2018, 53, 13813-13825.	3.7	30
44	A poly(hydroxyethyl methacrylate)–Ag nanoparticle porous hydrogel for simultaneous ⟨i⟩in vivo ⟨/i>prevention of the foreign-body reaction and bacterial infection. Nanotechnology, 2018, 29, 395101.	2.6	14
45	The hypothermic preservation of mammalian cells with assembling extracellular-matrix-mimetic microparticles. Journal of Materials Chemistry B, 2017, 5, 1535-1541.	5.8	16
46	One-step synthesis of an antibacterial and pro-healing wound dressing that can treat wound infections. Journal of Materials Chemistry B, 2017, 5, 8451-8458.	5 . 8	75
47	Exploring the Potential of Biocompatible Osmoprotectants as Highly Efficient Cryoprotectants. ACS Applied Materials & Discompanies, 2017, 9, 42516-42524.	8.0	60