Darja Marolt Presen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922879/publications.pdf Version: 2024-02-01

		394421	501196
30	2,241	19	28
papers	citations	h-index	g-index
31	31	31	3200
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mechanisms of Ageing and Development, 2021, 198, 111539.	4.6	19
2	Bone-Marrow-Derived Mesenchymal Stromal Cells: From Basic Biology to Applications in Bone Tissue Engineering and Bone Regeneration. , 2020, , 139-192.		2
3	Increased Exhaustion of the Subchondral Bone-Derived Mesenchymal Stem/ Stromal Cells in Primary Versus Dysplastic Osteoarthritis. Stem Cell Reviews and Reports, 2020, 16, 742-754.	3.8	15
4	A novel fluorescent hydroxyapatite based on iron quantum cluster template to enhance osteogenic differentiation. Materials Science and Engineering C, 2020, 111, 110775.	7.3	7
5	Comprehensive analysis of skeletal muscle- and bone-derived mesenchymal stem/stromal cells in patients with osteoarthritis and femoral neck fracture. Stem Cell Research and Therapy, 2020, 11, 146.	5.5	25
6	Bone-Marrow-Derived Mesenchymal Stromal Cells: From Basic Biology to Applications in Bone Tissue Engineering and Bone Regeneration. , 2020, , 1-55.		0
7	Skeletal-muscle-derived mesenchymal stem/stromal cells from patients with osteoarthritis show superior biological properties compared to bone-derived cells. Stem Cell Research, 2019, 38, 101465.	0.7	25
8	Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 2019, 7, 352.	4.1	92
9	Synergistic Effects of Hypoxia and Morphogenetic Factors on Early Chondrogenic Commitment of Human Embryonic Stem Cells in Embryoid Body Culture. Stem Cell Reviews and Reports, 2015, 11, 228-241.	5.6	20
10	Tissue Engineering Craniofacial Bone Products. , 2015, , 521-539.		1
11	Make no bones about it: cells could soon be reprogrammed to grow replacement bones?. Expert Opinion on Biological Therapy, 2014, 14, 1-5.	3.1	17
12	Primary Human Alveolar Bone Cells Isolated from Tissue Samples Acquired at Periodontal Surgeries Exhibit Sustained Proliferation and Retain Osteogenic Phenotype during In Vitro Expansion. PLoS ONE, 2014, 9, e92969.	2.5	13
13	Bioreactor engineering of stem cell environments. Biotechnology Advances, 2013, 31, 1020-1031.	11.7	53
14	Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors. Methods in Molecular Biology, 2013, 1202, 173-184.	0.9	14
15	Engineering bone tissue substitutes from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8680-8685.	7.1	196
16	Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Research and Therapy, 2013, 4, 106.	5.5	24
17	Engineering bone tissue from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8705-8709.	7.1	153
18	Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials, 2012, 33, 8329-8342.	11.4	88

DARJA MAROLT PRESEN

#	Article	IF	CITATIONS
19	State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation. Journal of Blood Transfusion, 2012, 2012, 1-10.	3.3	14
20	Effects of Pamidronate on Human Alveolar Osteoblasts In Vitro. Journal of Oral and Maxillofacial Surgery, 2012, 70, 1081-1092.	1.2	36
21	Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos. Stem Cells International, 2011, 2011, 1-9.	2.5	20
22	Potential pathophysiological mechanisms in osteonecrosis of the jaw. Annals of the New York Academy of Sciences, 2011, 1218, 62-79.	3.8	138
23	Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnology and Bioengineering, 2011, 108, 1159-1170.	3.3	129
24	Bone Grafts Engineered from Human Adipose-Derived Stem Cells in Perfusion Bioreactor Culture. Tissue Engineering - Part A, 2010, 16, 179-189.	3.1	157
25	Bone tissue engineering with human stem cells. Stem Cell Research and Therapy, 2010, 1, 10.	5.5	171
26	Engineering custom-designed osteochondral tissue grafts. Trends in Biotechnology, 2008, 26, 181-189.	9.3	133
27	Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. Journal of the Royal Society Interface, 2008, 5, 929-939.	3.4	57
28	Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Current Stem Cell Research and Therapy, 2008, 3, 254-264.	1.3	280
29	Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials, 2006, 27, 6138-6149.	11.4	171
30	Specific activation of the <i>Bacillus</i> quorumâ€sensing systems by isoprenylated pheromone variants. Molecular Microbiology, 2002, 44, 1561-1573.	2.5	166