Darja Marolt Presen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922879/publications.pdf

Version: 2024-02-01

30 2,241 19 28 papers citations h-index g-index

31 31 31 31 3200

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Current Stem Cell Research and Therapy, 2008, 3, 254-264.	1.3	280
2	Engineering bone tissue substitutes from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8680-8685.	7.1	196
3	Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials, 2006, 27, 6138-6149.	11.4	171
4	Bone tissue engineering with human stem cells. Stem Cell Research and Therapy, 2010, 1, 10.	5 . 5	171
5	Specific activation of the <i>Bacillus</i> quorumâ€sensing systems by isoprenylated pheromone variants. Molecular Microbiology, 2002, 44, 1561-1573.	2.5	166
6	Bone Grafts Engineered from Human Adipose-Derived Stem Cells in Perfusion Bioreactor Culture. Tissue Engineering - Part A, 2010, 16, 179-189.	3.1	157
7	Engineering bone tissue from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8705-8709.	7.1	153
8	Potential pathophysiological mechanisms in osteonecrosis of the jaw. Annals of the New York Academy of Sciences, 2011, 1218, 62-79.	3.8	138
9	Engineering custom-designed osteochondral tissue grafts. Trends in Biotechnology, 2008, 26, 181-189.	9.3	133
10	Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnology and Bioengineering, 2011, 108, 1159-1170.	3.3	129
11	Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 2019, 7, 352.	4.1	92
12	Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials, 2012, 33, 8329-8342.	11.4	88
13	Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. Journal of the Royal Society Interface, 2008, 5, 929-939.	3.4	57
14	Bioreactor engineering of stem cell environments. Biotechnology Advances, 2013, 31, 1020-1031.	11.7	53
15	Effects of Pamidronate on Human Alveolar Osteoblasts In Vitro. Journal of Oral and Maxillofacial Surgery, 2012, 70, 1081-1092.	1.2	36
16	Skeletal-muscle-derived mesenchymal stem/stromal cells from patients with osteoarthritis show superior biological properties compared to bone-derived cells. Stem Cell Research, 2019, 38, 101465.	0.7	25
17	Comprehensive analysis of skeletal muscle- and bone-derived mesenchymal stem/stromal cells in patients with osteoarthritis and femoral neck fracture. Stem Cell Research and Therapy, 2020, 11, 146.	5 . 5	25
18	Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Research and Therapy, 2013, 4, 106.	5 . 5	24

#	Article	IF	CITATIONS
19	Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos. Stem Cells International, 2011, 2011, 1-9.	2.5	20
20	Synergistic Effects of Hypoxia and Morphogenetic Factors on Early Chondrogenic Commitment of Human Embryonic Stem Cells in Embryoid Body Culture. Stem Cell Reviews and Reports, 2015, 11, 228-241.	5.6	20
21	Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mechanisms of Ageing and Development, 2021, 198, 111539.	4.6	19
22	Make no bones about it: cells could soon be reprogrammed to grow replacement bones?. Expert Opinion on Biological Therapy, 2014, 14, 1-5.	3.1	17
23	Increased Exhaustion of the Subchondral Bone-Derived Mesenchymal Stem/ Stromal Cells in Primary Versus Dysplastic Osteoarthritis. Stem Cell Reviews and Reports, 2020, 16, 742-754.	3.8	15
24	State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation. Journal of Blood Transfusion, 2012, 2012, 1-10.	3.3	14
25	Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors. Methods in Molecular Biology, 2013, 1202, 173-184.	0.9	14
26	Primary Human Alveolar Bone Cells Isolated from Tissue Samples Acquired at Periodontal Surgeries Exhibit Sustained Proliferation and Retain Osteogenic Phenotype during In Vitro Expansion. PLoS ONE, 2014, 9, e92969.	2.5	13
27	A novel fluorescent hydroxyapatite based on iron quantum cluster template to enhance osteogenic differentiation. Materials Science and Engineering C, 2020, 111, 110775.	7.3	7
28	Bone-Marrow-Derived Mesenchymal Stromal Cells: From Basic Biology to Applications in Bone Tissue Engineering and Bone Regeneration., 2020, , 139-192.		2
29	Tissue Engineering Craniofacial Bone Products. , 2015, , 521-539.		1
30	Bone-Marrow-Derived Mesenchymal Stromal Cells: From Basic Biology to Applications in Bone Tissue Engineering and Bone Regeneration. , 2020, , 1-55.		0