Bao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922659/publications.pdf

Version: 2024-02-01

623734 752698 1,118 20 14 20 h-index citations g-index papers 20 20 20 1445 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Smart Textileâ€Integrated Microelectronic Systems for Wearable Applications. Advanced Materials, 2020, 32, e1901958.	21.0	427
2	A Fully Verified Theoretical Analysis of Contactâ€Mode Triboelectric Nanogenerators as a Wearable Power Source. Advanced Energy Materials, 2016, 6, 1600505.	19.5	148
3	Highly Flexible, Largeâ€Area, and Facile Textileâ€Based Hybrid Nanogenerator with Cascaded Piezoelectric and Triboelectric Units for Mechanical Energy Harvesting. Advanced Materials Technologies, 2018, 3, 1800016.	5 . 8	79
4	Triboelectric charge density of porous and deformable fabrics made from polymer fibers. Nano Energy, 2018, 53, 383-390.	16.0	71
5	Quantifying Energy Harvested from Contactâ€Mode Hybrid Nanogenerators with Cascaded Piezoelectric and Triboelectric Units. Advanced Energy Materials, 2017, 7, 1601569.	19.5	69
6	Recent advances in wearable textileâ€based triboelectric generator systems for energy harvesting from human motion. EcoMat, 2020, 2, e12054.	11.9	63
7	Textile Electronics for VR/AR Applications. Advanced Functional Materials, 2021, 31, 2007254.	14.9	50
8	Localized deformation in aluminium foam during middle speed Hopkinson bar impact tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 734-743.	5 . 6	33
9	Upper limits for output performance of contact-mode triboelectric nanogenerator systems. Nano Energy, 2019, 57, 66-73.	16.0	26
10	An Adhesive Surface Enables Highâ€Performance Mechanical Energy Harvesting with Unique Frequencyâ€Insensitive and Pressureâ€Enhanced Output Characteristics. Advanced Materials, 2020, 32, e1907948.	21.0	25
11	Wireless Multistimulusâ€Responsive Fabricâ€Based Actuators for Soft Robotic, Human–Machine Interactive, and Wearable Applications. Advanced Materials Technologies, 2020, 5, 2000341.	5.8	21
12	Monitoring elbow isometric contraction by novel wearable fabric sensing device. Smart Materials and Structures, 2016, 25, 125022.	3 . 5	19
13	Permeable and washable electronics based on polyamide fibrous membrane for wearable applications. Composites Science and Technology, 2021, 207, 108729.	7.8	19
14	Predicting performance of fiber thermoelectric generator arrays in wearable electronic applications. Nano Energy, 2020, 76, 105117.	16.0	18
15	Modeling the stress and resistance relaxation of conductive composites-coated fabric strain sensors. Composites Science and Technology, 2021, 204, 108645.	7.8	16
16	Flexible thermoelectric generator with high Seebeck coefficients made from polymer composites and heat-sink fabrics. Communications Materials, 2022, 3, .	6.9	14
17	Highly Sensitive and Durable Structured Fibre Sensors for Low-Pressure Measurement in Smart Skin. Sensors, 2019, 19, 1811.	3.8	5
18	Smart bionic morphing leg mannequin for pressure assessment of compression garment. Smart Materials and Structures, 2020, 29, 055041.	3 . 5	5

#	Article	IF	CITATIONS
19	The Deformation Measurement and Analysis on Meso-Structure of Aluminum Foams During SHPB Test. Journal of Testing and Evaluation, 2014, 42, 621-628.	0.7	5
20	Surface microstructural engineering of silicone elastomers for high performance adhesive surface-enabled mechanical energy harvesters. Journal of Materials Chemistry A, 2022, 10, 9643-9654.	10.3	5