
Dirk Bumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8921898/publications.pdf Version: 2024-02-01

DIDK RIIMANN

#	Article	IF	CITATIONS
1	Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019, 17, 441-448.	28.6	748
2	Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature, 2014, 509, 366-370.	27.8	416
3	Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature, 2006, 440, 303-307.	27.8	327
4	Phenotypic Variation of Salmonella in Host Tissues Delays Eradication by Antimicrobial Chemotherapy. Cell, 2014, 158, 722-733.	28.9	259
5	Parallel Exploitation of Diverse Host Nutrients Enhances Salmonella Virulence. PLoS Pathogens, 2013, 9, e1003301.	4.7	163
6	Disparate Impact of Oxidative Host Defenses Determines the Fate of Salmonella during Systemic Infection in Mice. Cell Host and Microbe, 2014, 15, 72-83.	11.0	151
7	A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Systems Biology, 2011, 5, 8.	3.0	128
8	Dynamics in protein translation sustaining T cell preparedness. Nature Immunology, 2020, 21, 927-937.	14.5	120
9	Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nature Microbiology, 2017, 2, 1616-1623.	13.3	118
10	Host resistance factor SLC11A1 restricts <i>Salmonella</i> growth through magnesium deprivation. Science, 2019, 366, 995-999.	12.6	97
11	Heterogeneous Host-Pathogen Encounters: Act Locally, Think Globally. Cell Host and Microbe, 2015, 17, 13-19.	11.0	90
12	Antigen selection based on expression levels during infection facilitates vaccine development for an intracellular pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8739-8744.	7.1	85
13	Salmonella enterica Highly Expressed Genes Are Disease Specific. Infection and Immunity, 2006, 74, 1649-1660.	2.2	85
14	Immunity to Intracellular Salmonella Depends on Surface-associated Antigens. PLoS Pathogens, 2012, 8, e1002966.	4.7	74
15	<i>Shigella</i> reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9929-9934.	7.1	71
16	Molecular reprogramming and phenotype switching in <i>Staphylococcus aureus</i> lead to high antibiotic persistence and affect therapy success. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	62
17	Catechol siderophores repress the pyochelin pathway and activate the enterobactin pathway in <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> : an opportunity for siderophore–antibiotic conjugates development. Environmental Microbiology, 2016, 18, 819-832.	3.8	59
18	Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature Microbiology, 2017, 2, 16268.	13.3	58

DIRK BUMANN

#	Article	IF	CITATIONS
19	Host Delivery of Favorite Meals for Intracellular Pathogens. PLoS Pathogens, 2015, 11, e1004866.	4.7	56
20	The hepcidin-ferroportin axis controls the iron content of Salmonella-containing vacuoles in macrophages. Nature Communications, 2018, 9, 2091.	12.8	51
21	Solitary Intestinal Lymphoid Tissue Provides a Productive Port of Entry for <i>Salmonella enterica</i> Serovar Typhimurium. Infection and Immunity, 2007, 75, 1577-1585.	2.2	48
22	Classical Activation of Macrophages Leads to Lipid Droplet Formation Without de novo Fatty Acid Synthesis. Frontiers in Immunology, 2020, 11, 131.	4.8	46
23	Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in <i>Pseudomonas aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
24	Has nature already identified all useful antibacterial targets?. Current Opinion in Microbiology, 2008, 11, 387-392.	5.1	41
25	A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure, 2019, 27, 268-280.e6.	3.3	41
26	System-level analysis of Salmonella metabolism during infection. Current Opinion in Microbiology, 2009, 12, 559-567.	5.1	39
27	Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains. EBioMedicine, 2019, 41, 479-487.	6.1	37
28	Pathogen proteomes during infection: A basis for infection research and novel control strategies. Journal of Proteomics, 2010, 73, 2267-2276.	2.4	36
29	A Novel Genome-Editing Platform for Drug-Resistant Acinetobacter baumannii Reveals an AdeR-Unrelated Tigecycline Resistance Mechanism. Antimicrobial Agents and Chemotherapy, 2016, 60, 7263-7271.	3.2	36
30	Optimization of GFP levels for analyzingSalmonellagene expression during an infection. FEBS Letters, 2002, 521, 105-108.	2.8	35
31	The Central Metabolism Regulator EIIA Glc Switches Salmonella from Growth Arrest to Acute Virulence through Activation of Virulence Factor Secretion. Cell Reports, 2014, 7, 1426-1433.	6.4	26
32	Intracellular <i>Salmonella</i> metabolism. Cellular Microbiology, 2017, 19, e12766.	2.1	25
33	Getting Drugs through Small Pores: Exploiting the Porins Pathway in <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2018, 4, 1519-1528.	3.8	25
34	Extensive In Vivo Resilience of Persistent Salmonella. PLoS ONE, 2012, 7, e42007.	2.5	24
35	Regulation of chaperone function by coupled folding and oligomerization. Science Advances, 2020, 6, .	10.3	24
36	Heterogeneity of Salmonella-host interactions in infected host tissues. Current Opinion in Microbiology, 2017, 39, 57-63.	5.1	23

DIRK BUMANN

#	Article	IF	CITATIONS
37	FACS-isolation of Salmonella-infected cells with defined bacterial load from mouse spleen. Journal of Microbiological Methods, 2007, 71, 220-224.	1.6	20
38	The pathogen <i>Pseudomonas aeruginosa</i> optimizes the production of the siderophore pyochelin upon environmental challenges. Metallomics, 2020, 12, 2108-2120.	2.4	20
39	Identification of Protective Antigens for Vaccination against Systemic Salmonellosis. Frontiers in Immunology, 2014, 5, 381.	4.8	19
40	Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality. BMC Microbiology, 2016, 16, 203.	3.3	19
41	Efficient dual-negative selection for bacterial genome editing. BMC Microbiology, 2020, 20, 129.	3.3	16
42	Tissue compartmentalization enables <i>Salmonella</i> persistence during chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
43	Increased Production of Outer Membrane Vesicles by Salmonella Interferes with Complement-Mediated Innate Immune Attack. MBio, 2021, 12, e0086921.	4.1	14
44	Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site. PLoS Biology, 2021, 19, e3001446.	5.6	14
45	Nutritional physiology and colony form in <i>Podocoryna carnea</i> (Cnidaria: Hydrozoa). Invertebrate Biology, 2008, 127, 368-380.	0.9	9
46	Antibiotic chemotherapy against heterogeneous pathogen populations in complex host tissues. F1000Research, 2019, 8, 1781.	1.6	9
47	<i>Salmonella</i> Single-Cell Metabolism and Stress Responses in Complex Host Tissues. Microbiology Spectrum, 2019, 7, .	3.0	8
48	Single-cell reporters for pathogen responses to antimicrobial host attacks. Current Opinion in Microbiology, 2021, 59, 16-23.	5.1	8
49	Intestinal Inflammation Responds to Microbial Tissue Load Independent of Pathogen/Non-Pathogen Discrimination. PLoS ONE, 2012, 7, e35992.	2.5	7
50	Non-specific interference of cobalt with siderophore-dependent iron uptake pathways. Metallomics, 2019, 11, 1937-1951.	2.4	7
51	Salmonella Single-Cell Metabolism and Stress Responses in Complex Host Tissues. , 2020, , 167-177.		0