Camila Barreneche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8921844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Active Thermal Energy Storage (TES) With Phase Change Materials (PCM) for High Temperature. , 2022, , 470-478.		1
2	Characterisation of commercial phase change materials with potential application in gypsum boards for buildings. International Journal of Energy Research, 2022, 46, 860-875.	4.5	5
3	A detailed energy analysis of a novel evaporator with latent thermal energy storage ability. Applied Thermal Engineering, 2022, 201, 117844.	6.0	12
4	Simulated performance of a solar-assisted heat pump system including a phase-change storage tank for residential heating applications: A case study in Madrid, Spain. Journal of Energy Storage, 2022, 47, 103615.	8.1	16
5	Novel sampling procedure and statistical analysis for the thermal characterization of ionic nanofluids. Journal of Molecular Liquids, 2022, 347, 118316.	4.9	3
6	Assessment of Solid Wastes and Byâ€Products as Solid Particle Materials for Concentrated Solar Power Plants. Solar Rrl, 2022, 6, .	5.8	1
7	Thermal energy storage for electric vehicles at low temperatures: Concepts, systems, devices and materials. Renewable and Sustainable Energy Reviews, 2022, 160, 112263.	16.4	28
8	Experimental steady-state and transient thermal performance of materials for thermal energy storage in building applications: From powder SS-PCMs to SS-PCM-based acrylic plaster. Energy, 2022, 250, 123768.	8.8	16
9	The relevance of thermochemical energy storage in the last two decades: The analysis of research evolution. Journal of Energy Storage, 2022, 51, 104377.	8.1	13
10	Thermo-mechanical stability of concrete containing steel slag as aggregate after high temperature thermal cycles. Solar Energy, 2022, 239, 59-73.	6.1	8
11	Bayesian optimization for effective thermal conductivity measurement of thermal energy storage: An experimental and numerical approach. Journal of Energy Storage, 2022, 52, 104795.	8.1	6
12	Effect of Nanoparticles on the Thermal Stability and Reaction Kinetics in Ionic Nanofluids. Nanomaterials, 2022, 12, 1777.	4.1	2
13	Key Challenges for High Temperature Thermal Energy Storage in Concrete—First Steps towards a Novel Storage Design. Energies, 2022, 15, 4544.	3.1	11
14	Biobased phase change materials for cooling in buildings. , 2021, , 291-302.		0
15	Embodied energy and embodied carbon of structural building materials: Worldwide progress and barriers through literature map analysis. Energy and Buildings, 2021, 231, 110612.	6.7	73
16	Introduction to thermal energy storage systems. , 2021, , 1-33.		8
17	Characterization and testing of solid particles to be used in CSP plants: Aging and fluidization tests. Solar Energy Materials and Solar Cells, 2021, 219, 110793.	6.2	27

18 Waste heat recovery using thermal energy storage. , 2021, , 639-653.

#	Article	lF	CITATIONS
19	Components. Thermal Energy Storage. , 2021, , .		0
20	Thermal energy storage systems for cooling in residential buildings. , 2021, , 595-623.		1
21	Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications. Molecules, 2021, 26, 1260.	3.8	12
22	Degradation of Fatty Acid Phase-Change Materials (PCM): New Approach for Its Characterization. Molecules, 2021, 26, 982.	3.8	7
23	Understanding the abnormal thermal behavior of nanofluids through infrared thermography and thermo-physical characterization. Scientific Reports, 2021, 11, 4879.	3.3	4
24	Thermal cycling test of solid particles to be used in concentrating solar power plants. Solar Energy Materials and Solar Cells, 2021, 222, 110936.	6.2	12
25	Viscoelastic characterization of seven laminated glass interlayer materials from static tests. Construction and Building Materials, 2021, 279, 122503.	7.2	20
26	Influence of thermal treatments on the absorption and thermal properties of a clay mineral support used for shape-stabilization of fatty acids Journal of Energy Storage, 2021, 36, 102427.	8.1	13
27	A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments. Applied Energy, 2021, 288, 116555.	10.1	72
28	Shell-and-Tube Latent Heat Thermal Energy Storage Design Methodology with Material Selection, Storage Performance Evaluation, and Cost Minimization. Applied Sciences (Switzerland), 2021, 11, 4180.	2.5	10
29	Novel Shape-Stabilized Phase Change Material with Cascade Character: Synthesis, Performance and Shaping Evaluation. Energies, 2021, 14, 2621.	3.1	11
30	Recent developments of thermal energy storage applications in the built environment: A bibliometric analysis and systematic review. Applied Thermal Engineering, 2021, 189, 116666.	6.0	72
31	Trends and future perspectives on the integration of phase change materials in heat exchangers. Journal of Energy Storage, 2021, 38, 102544.	8.1	12
32	Research progress and trends on the use of concrete as thermal energy storage material through bibliometric analysis. Journal of Energy Storage, 2021, 38, 102562.	8.1	17
33	Advanced Concrete Steam Accumulation Tanks for Energy Storage for Solar Thermal Electricity. Energies, 2021, 14, 3896.	3.1	4
34	Long-term loading and recovery of a laminated glass slab with three different interlayers. Construction and Building Materials, 2021, 287, 122991.	7.2	14
35	Comparative study between heat pipe and shell-and-tube thermal energy storage. Applied Thermal Engineering, 2021, 192, 116974.	6.0	10
36	Concentrating Solar Power Technologies: A Bibliometric Study of Past, Present and Future Trends in Concentrating Solar Power Research. Frontiers in Mechanical Engineering, 2021, 7, .	1.8	11

#	Article	IF	CITATIONS
37	Experimental Study on Two PCM Macro-Encapsulation Designs in a Thermal Energy Storage Tank. Applied Sciences (Switzerland), 2021, 11, 6171.	2.5	16
38	Thermal reliability of organic-organic phase change materials and their shape-stabilized composites. Journal of Energy Storage, 2021, 40, 102661.	8.1	14
39	New shapeâ€stabilized phase change materials obtained by singleâ€screw extruder. Energy Storage, 2021, 3, e268.	4.3	6
40	A framework for sustainable evaluation of thermal energy storage in circular economy. Renewable Energy, 2021, 175, 686-701.	8.9	13
41	Experimental determination of thermal conductivity of fatty acid binary mixtures and their shape-stabilized composites. Renewable Energy, 2021, 175, 1167-1173.	8.9	5
42	Experimental study and comparison of different fully transparent laminated glass beam designs. Glass Structures and Engineering, 2021, 6, 463-486.	1.7	1
43	Experimental analysis of a latent thermal energy storage system enhanced with metal foam. Journal of Energy Storage, 2021, 41, 102860.	8.1	22
44	Perspectives on thermal energy storage research. Energy, 2021, 231, 120943.	8.8	47
45	Systematic review on model predictive control strategies applied to active thermal energy storage systems. Renewable and Sustainable Energy Reviews, 2021, 149, 111385.	16.4	39
46	Thermal energy storage with phase change materials in solar power plants. Economic analysis. Journal of Energy Storage, 2021, 43, 103184.	8.1	24
47	Thermal Energy Storage Materials (TESMs)—What Does It Take to Make Them Fly?. Crystals, 2021, 11, 1276.	2.2	18
48	Introduction to the Section on Thermodynamics of Energy Storage. , 2021, , .		0
49	Introduction to Thermal Energy Storage and Technologies Definition. , 2021, , .		1
50	Where is Thermal Energy Storage (TES) research going? – A bibliometric analysis. Solar Energy, 2020, 200, 37-50.	6.1	56
51	Polymeric interlayer materials for laminated glass: A review. Construction and Building Materials, 2020, 230, 116897.	7.2	83
52	Thermal energy storage technologies for concentrated solar power – A review from a materials perspective. Renewable Energy, 2020, 156, 1244-1265.	8.9	204
53	Corrosion assessment of promising hydrated salts as sorption materials for thermal energy storage systems. Renewable Energy, 2020, 150, 428-434.	8.9	17
54	Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization. Construction and Building Materials, 2020, 239, 117669.	7.2	48

#	Article	IF	CITATIONS
55	Building thermal storage technology: Compensating renewable energy fluctuations. Journal of Energy Storage, 2020, 27, 101147.	8.1	15
56	Behaviour of a concrete wall containing microâ€encapsulated PCM after a decade of its construction. Solar Energy, 2020, 200, 108-113.	6.1	57
57	Dynamic Corrosion Test Using LiNO3 Containing Molten Salt for CSP Applications. Applied Sciences (Switzerland), 2020, 10, 4305.	2.5	3
58	Experimental Devices to Investigate the Long-Term Stability of Phase Change Materials under Application Conditions. Applied Sciences (Switzerland), 2020, 10, 7968.	2.5	11
59	Techno-Economic Analysis of a Heat Pump Cycle Including a Three-Media Refrigerant/Phase Change Material/Water Heat Exchanger in the Hot Superheated Section for Efficient Domestic Hot Water Generation. Applied Sciences (Switzerland), 2020, 10, 7873.	2.5	8
60	Performance Study of Direct Integration of Phase Change Material into an Innovative Evaporator of a Simple Vapour Compression System. Applied Sciences (Switzerland), 2020, 10, 4649.	2.5	18
61	Assessing corrosive behaviour of commercial phase change materials in the 21–25 ºC temperature range. Journal of Energy Storage, 2020, 32, 101711.	8.1	14
62	Bibliometric analysis of smart control applications in thermal energy storage systems. A model predictive control approach. Journal of Energy Storage, 2020, 32, 101704.	8.1	41
63	Systematic review on the use of heat pipes in latent heat thermal energy storage tanks. Journal of Energy Storage, 2020, 32, 101733.	8.1	34
64	Advances Toward a Net-Zero Global Building Sector. Annual Review of Environment and Resources, 2020, 45, 227-269.	13.4	86
65	Double-lap shear test on laminated glass specimens under diverse ageing conditions. Construction and Building Materials, 2020, 249, 118784.	7.2	7
66	Hybrid 3 in 1 thermal energy storage system – Outlook for a novel storage strategy. Applied Energy, 2020, 274, 115024.	10.1	20
67	Experimental and Computational Study of the Implementation of mPCM-Modified Gypsum Boards in a Test Enclosure. Buildings, 2020, 10, 15.	3.1	9
68	Selection of the Appropriate Phase Change Material for Two Innovative Compact Energy Storage Systems in Residential Buildings. Applied Sciences (Switzerland), 2020, 10, 2116.	2.5	35
69	Evaluation of volume change in phase change materials during their phase transition. Journal of Energy Storage, 2020, 28, 101206.	8.1	31
70	Effect of nanoparticles in molten salts – MD simulations and experimental study. Renewable Energy, 2020, 152, 208-216.	8.9	32
71	New coloured coatings to enhance silica sand absorbance for direct particle solar receiver applications. Renewable Energy, 2020, 152, 1-8.	8.9	20
72	Tensile test on interlayer materials for laminated glass under diverse ageing conditions and strain rates. Construction and Building Materials, 2020, 243, 118230.	7.2	23

#	Article	IF	CITATIONS
73	Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review. Energy and Buildings, 2020, 219, 110009.	6.7	116
74	Novel geopolymer for use as a sensible storage option in high temperature thermal energy storage systems. AIP Conference Proceedings, 2020, , .	0.4	11
75	Effect of the impurity magnesium nitrate in the thermal decomposition of the solar salt. Solar Energy, 2019, 192, 186-192.	6.1	18
76	Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review. Solar Energy, 2019, 192, 3-34.	6.1	115
77	Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Applied Energy, 2019, 254, 113646.	10.1	138
78	Alkali-Activated Cements for TES Materials in Buildings' Envelops Formulated With Glass Cullet Recycling Waste and Microencapsulated Phase Change Materials. Materials, 2019, 12, 2144.	2.9	9
79	Study on solar absorptance and thermal stability of solid particles materials used as TES at high temperature on different aging stages for CSP applications. Solar Energy Materials and Solar Cells, 2019, 201, 110088.	6.2	22
80	Comparative Analysis of Energy Demand and CO2 Emissions on Different Typologies of Residential Buildings in Europe. Energies, 2019, 12, 2436.	3.1	14
81	Innovative composite sorbent for thermal energy storage based on a SrBr2·6H2O filled silicone composite foam. Journal of Energy Storage, 2019, 26, 100954.	8.1	20
82	Thermal energy storage in solar energy systems: editorial. Solar Energy, 2019, 192, 1-2.	6.1	6
83	Synthesis and Thermophysical Characterization of Fatty Amides for Thermal Energy Storage. Molecules, 2019, 24, 3777.	3.8	11
84	TES-PS10 postmortem tests: Carbon steel corrosion performance exposed to molten salts under relevant operation conditions and lessons learnt for commercial scale-up. Journal of Energy Storage, 2019, 26, 100922.	8.1	6
85	Magnesium sulphate-silicone foam composites for thermochemical energy storage: Assessment of dehydration behaviour and mechanical stability. Solar Energy Materials and Solar Cells, 2019, 200, 109992.	6.2	28
86	Corrosion Assessment of Myo-Inositol Sugar Alcohol as a Phase Change Material in Storage Systems Connected to Fresnel Solar Plants. Molecules, 2019, 24, 1383.	3.8	13
87	Review of solid particle materials for heat transfer fluid and thermal energy storage in solar thermal power plants. Energy Storage, 2019, 1, e63.	4.3	42
88	Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation. Energies, 2019, 12, 1111.	3.1	25
89	Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: Lab-scale characterization. Energy and Buildings, 2019, 192, 75-83.	6.7	54
90	Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review. Renewable and Sustainable Energy Reviews, 2019, 108, 32-52.	16.4	120

#	Article	IF	CITATIONS
91	Mainstreaming commercial CSP systems: A technology review. Renewable Energy, 2019, 140, 152-176.	8.9	191
92	Own-Synthetize Nanoparticles to Develop Nano-Enhanced Phase Change Materials (NEPCM) to Improve the Energy Efficiency in Buildings. Molecules, 2019, 24, 1232.	3.8	18
93	Asphalt emulsion formulation: State of the art of formulation, properties and results of HIPR emulsions. Construction and Building Materials, 2019, 212, 19-26.	7.2	16
94	Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system. Energy Conversion and Management, 2019, 184, 530-538.	9.2	66
95	Materials Selection for Thermal Energy Storage Applications—Case Studies. Green Energy and Technology, 2019, , 55-66.	0.6	1
96	Experimental Methods for the Characterization of Materials for Latent Thermal Energy Storage. Green Energy and Technology, 2019, , 89-101.	0.6	2
97	Experimental results of mechanical, adhesive, and laminated connections for laminated glass elements – A review. Engineering Structures, 2019, 180, 192-204.	5.3	29
98	Evaluation of energy density as performance indicator for thermal energy storage at material and system levels. Applied Energy, 2019, 235, 954-962.	10.1	40
99	Corrosion monitoring and mitigation techniques on advanced thermal energy storage materials for CSP plants. Solar Energy Materials and Solar Cells, 2019, 192, 179-187.	6.2	46
100	Benchmarking of useful phase change materials for a building application. Energy and Buildings, 2019, 182, 45-50.	6.7	51
101	Life cycle costing as a bottom line for the life cycle sustainability assessment in the solar energy sector: A review. Solar Energy, 2019, 192, 238-262.	6.1	42
102	Use of partial load operating conditions for latent thermal energy storage management. Applied Energy, 2018, 216, 234-242.	10.1	29
103	New formulation and characterization of enhanced bulk-organic phase change materials. Energy and Buildings, 2018, 167, 38-48.	6.7	21
104	Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Applied Energy, 2018, 212, 1448-1461.	10.1	107
105	High temperature systems using solid particles as TES and HTF material: A review. Applied Energy, 2018, 213, 100-111.	10.1	72
106	Thermal stress reduction in cool roof membranes using phase change materials (PCM). Energy and Buildings, 2018, 158, 1097-1105.	6.7	57
107	Comparison of past projections of global and regional primary and final energy consumption with historical data. Renewable and Sustainable Energy Reviews, 2018, 82, 681-688.	16.4	30
108	Thermomechanical testing under operating conditions of A516Gr70 used for CSP storage tanks. Solar Energy Materials and Solar Cells, 2018, 174, 509-514.	6.2	7

#	Article	IF	CITATIONS
109	Influence of nanoparticle morphology and its dispersion ability regarding thermal properties of water used as phase change material. Applied Thermal Engineering, 2018, 128, 121-126.	6.0	29
110	Combining biocatalysts to achieve new phase change materials. Application to non-edible animal fat. Molecular Catalysis, 2018, 444, 76-83.	2.0	11
111	Enthalpy-temperature plots to compare calorimetric measurements of phase change materials at different sample scales. Journal of Energy Storage, 2018, 15, 32-38.	8.1	26
112	Trends in penetration and ownership of household appliances. Renewable and Sustainable Energy Reviews, 2018, 82, 4044-4059.	16.4	14
113	Household appliances penetration and ownership trends in residential buildings. Renewable and Sustainable Energy Reviews, 2018, 98, 1-8.	16.4	18
114	Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants. Energies, 2018, 11, 2358.	3.1	62
115	Process integration of thermal energy storage systems – Evaluation methodology and case studies. Applied Energy, 2018, 230, 750-760.	10.1	47
116	Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk. Applied Energy, 2018, 224, 602-614.	10.1	60
117	Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C. Energies, 2018, 11, 861.	3.1	35
118	Static Concept at University of Lleida. , 2018, , 131-156.		0
119	Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form. Materials, 2018, 11, 117.	2.9	25
120	Corrosion of AISI316 as containment material for latent heat thermal energy storage systems based on carbonates. Solar Energy Materials and Solar Cells, 2018, 186, 1-8.	6.2	17
121	Heating and cooling energy trends and drivers in Europe. Energy, 2017, 119, 425-434.	8.8	51
122	Empirical equations for viscosity and specific heat capacity determination of fatty acids. Journal of Energy Storage, 2017, 10, 20-27.	8.1	12
123	Materials selection for thermal energy storage systems in parabolic trough collector solar facilities using high chloride content nitrate salts. Solar Energy Materials and Solar Cells, 2017, 163, 134-147.	6.2	38
124	New proposed methodology for specific heat capacity determination of materials for thermal energy storage (TES) by DSC. Journal of Energy Storage, 2017, 11, 1-6.	8.1	88
125	Critical analysis of the T-history method: A fundamental approach. Thermochimica Acta, 2017, 650, 95-105.	2.7	34
126	The connection between the heat storage capability of PCM as a material property and their performance in real scale applications. Journal of Energy Storage, 2017, 13, 35-39.	8.1	39

#	Article	IF	CITATIONS
127	Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Applied Energy, 2017, 202, 420-434.	10.1	226
128	Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review. Renewable and Sustainable Energy Reviews, 2017, 80, 1239-1255.	16.4	158
129	Characterization of wastes based on inorganic double salt hydrates as potential thermal energy storage materials. Solar Energy Materials and Solar Cells, 2017, 170, 149-159.	6.2	49
130	Fatty acid eutectic mixtures and derivatives from non-edible animal fat as phase change materials. RSC Advances, 2017, 7, 24133-24139.	3.6	40
131	Influence of the heat transfer fluid in a CSP plant molten salts charging process. Renewable Energy, 2017, 113, 148-158.	8.9	36
132	Empirical equation to estimate viscosity of paraffin. Journal of Energy Storage, 2017, 11, 154-161.	8.1	16
133	Thermal characterization of different substrates under dried conditions for extensive green roofs. Energy and Buildings, 2017, 144, 175-180.	6.7	33
134	Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements. Renewable and Sustainable Energy Reviews, 2017, 75, 1320-1338.	16.4	107
135	High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. Journal of Energy Storage, 2017, 13, 262-267.	8.1	50
136	Considerations for the use of metal alloys as phase change materials for high temperature applications. Solar Energy Materials and Solar Cells, 2017, 171, 275-281.	6.2	99
137	Ionic compounds derived from crude glycerol: Thermal energy storage capability evaluation. Renewable Energy, 2017, 114, 629-637.	8.9	9
138	Experimental validation of the exact analytical solution to the steady periodic heat transfer problem in a PCM layer. Energy, 2017, 140, 1131-1147.	8.8	34
139	Method for controlling mean droplet size in the manufacture of phase inversion bituminous emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 527, 49-54.	4.7	15
140	Materials selection of steam-phase change material (PCM) heat exchanger for thermal energy storage systems in direct steam generation facilities. Solar Energy Materials and Solar Cells, 2017, 159, 526-535.	6.2	28
141	Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept. Applied Energy, 2017, 185, 836-845.	10.1	45
142	Review on sorption materials and technologies for heat pumps and thermal energy storage. Renewable Energy, 2017, 110, 3-39.	8.9	160
143	Phase Change Material Selection for Thermal Processes Working under Partial Load Operating Conditions in the Temperature Range between 120 and 200 °C. Applied Sciences (Switzerland), 2017, 7, 722.	2.5	39
144	Storage Stability of Bimodal Emulsions vs. Monomodal Emulsions. Applied Sciences (Switzerland), 2017, 7, 1267.	2.5	18

#	Article	IF	CITATIONS
145	Empirical equations for viscosity and specific heat capacity determination of paraffin PCM and fatty acid PCM. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012114.	0.6	2
146	Buildings Life Cycle Assessment. , 2017, , 275-290.		4
147	PCM/wood composite to store thermal energy in passive building envelopes. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012111.	0.6	23
148	Experimental Evaluation of a Paraffin as Phase Change Material for Thermal Energy Storage in Laboratory Equipment and in a Shell-and-Tube Heat Exchanger. Applied Sciences (Switzerland), 2016, 6, 112.	2.5	43
149	Preparation and Characterization of Inorganic PCM Microcapsules by Fluidized Bed Method. Materials, 2016, 9, 24.	2.9	33
150	Compatibility of materials for macroencapsulation of inorganic phase change materials: Experimental corrosion study. Applied Thermal Engineering, 2016, 107, 410-419.	6.0	44
151	Industrial waste materials and by-products as thermal energy storage (TES) materials: A review. AIP Conference Proceedings, 2016, , .	0.4	4
152	Acoustic insulation capacity of Vertical Greenery Systems for buildings. Applied Acoustics, 2016, 110, 218-226.	3.3	76
153	Molten salt facilities, lessons learnt at pilot plant scale to guarantee commercial plants; heat losses evaluation and correction. Renewable Energy, 2016, 94, 175-185.	8.9	33
154	Reduction of the subcooling of bischofite with the use of nucleatings agents. Solar Energy Materials and Solar Cells, 2016, 157, 1011-1018.	6.2	39
155	Study of corrosion by Dynamic Gravimetric Analysis (DGA) methodology. Influence of chloride content in solar salt. Solar Energy Materials and Solar Cells, 2016, 157, 526-532.	6.2	31
156	IEA SHC Task 42 / ECES Annex 29 WG A1: Engineering and Processing of PCMs, TCMs and Sorption Materials. Energy Procedia, 2016, 91, 207-217.	1.8	14
157	Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions. Energy and Buildings, 2016, 129, 274-283.	6.7	158
158	MSWI bottom ash for thermal energy storage: An innovative and sustainable approach for its reutilization. Renewable Energy, 2016, 99, 431-436.	8.9	14
159	Characterization of granular phase change materials for thermal energy storage applications in fluidized beds. Applied Energy, 2016, 181, 310-321.	10.1	14
160	Thermal storage in a MW scale. Molten salt solar thermal pilot facility: Plant description and commissioning experiences. Renewable Energy, 2016, 99, 852-866.	8.9	48
161	Influence of alkaline chlorides on thermal energy storage properties of bischofite. International Journal of Energy Research, 2016, 40, 1556-1563.	4.5	8
162	Use of multi-layered PCM gypsums to improve fire response. Physical, thermal and mechanical characterization. Energy and Buildings, 2016, 127, 1-9.	6.7	29

#	Article	IF	CITATIONS
163	Corrosion testing device for in-situ corrosion characterization in operational molten salts storage tanks: A516 Gr70 carbon steel performance under molten salts exposure. Solar Energy Materials and Solar Cells, 2016, 157, 383-392.	6.2	63
164	Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials. Renewable and Sustainable Energy Reviews, 2016, 59, 763-783.	16.4	109
165	Experimental evaluation of a concrete core slab with phase change materials for cooling purposes. Energy and Buildings, 2016, 116, 411-419.	6.7	28
166	Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renewable and Sustainable Energy Reviews, 2016, 53, 1059-1075.	16.4	411
167	Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques. Renewable and Sustainable Energy Reviews, 2016, 60, 1584-1601.	16.4	59
168	Thermal energy storage forÂrenewable heating and cooling systems. , 2016, , 139-179.		7
169	Use of by-products as additives in adobe bricks: Mechanical properties characterisation. Construction and Building Materials, 2016, 108, 105-111.	7.2	30
170	Review of technology: Thermochemical energy storage for concentrated solar power plants. Renewable and Sustainable Energy Reviews, 2016, 60, 909-929.	16.4	297
171	Health hazard, cycling and thermal stability as key parameters when selecting a suitable phase change material (PCM). Thermochimica Acta, 2016, 627-629, 39-47.	2.7	53
172	Economic impact of integrating PCM as passive system in buildings using Fanger comfort model. Energy and Buildings, 2016, 112, 159-172.	6.7	143
173	Corrosion evaluation and prevention of reactor materials to contain thermochemical material for thermal energy storage. Applied Thermal Engineering, 2016, 94, 355-363.	6.0	12
174	Innovative cool roofing membrane with integrated phase change materials: Experimental characterization of morphological, thermal and optic-energy behavior. Energy and Buildings, 2016, 112, 40-48.	6.7	31
175	Thermal energy storage in building integrated thermal systems: AÂreview. Part 1. active storage systems. Renewable Energy, 2016, 88, 526-547.	8.9	230
176	Mechanical response evaluation of microcapsules from different slurries. Renewable Energy, 2016, 85, 732-739.	8.9	16
177	In situ thermal and acoustic performance and environmental impact of the introduction of a shape-stabilized PCM layer for building applications. Renewable Energy, 2016, 85, 281-286.	8.9	51
178	Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. Renewable Energy, 2016, 85, 1334-1356.	8.9	208
179	Energy Efficiency Indicators for Assessing Construction Systems Storing Renewable Energy: Application to Phase Change Material-Bearing Façades. Energies, 2015, 8, 8630-8649.	3.1	6
180	Study of Fresh and Hardening Process Properties of Gypsum with Three Different PCM Inclusion Methods. Materials, 2015, 8, 6589-6596.	2.9	6

#	Article	IF	CITATIONS
181	Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Applied Energy, 2015, 151, 157-167.	10.1	371
182	Comparison of phase change slurries: Physicochemical and thermal properties. Energy, 2015, 87, 223-227.	8.8	28
183	Thermophysical characterization and thermal cycling stability of two TCM: CaCl 2 and zeolite. Applied Energy, 2015, 137, 726-730.	10.1	55
184	Embodied energy in thermal energy storage (TES) systems for high temperature applications. Applied Energy, 2015, 137, 793-799.	10.1	56
185	Thermal behaviour of insulation and phase change materials in buildings with internal heat loads: experimental study. Energy Efficiency, 2015, 8, 895-904.	2.8	15
186	Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage. Renewable Energy, 2015, 83, 729-736.	8.9	154
187	Thermal performance evaluation of bischofite at pilot plant scale. Applied Energy, 2015, 155, 826-833.	10.1	14
188	Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material. Applied Energy, 2015, 154, 616-621.	10.1	33
189	Phase change materials and thermal energy storage for buildings. Energy and Buildings, 2015, 103, 414-419.	6.7	486
190	Review on the methodology used in thermal stability characterization of phase change materials. Renewable and Sustainable Energy Reviews, 2015, 50, 665-685.	16.4	110
191	PCM incorporation in a concrete core slab as a thermal storage and supply system: Proof of concept. Energy and Buildings, 2015, 103, 70-82.	6.7	70
192	Key performance indicators in thermal energy storage: Survey and assessment. Renewable Energy, 2015, 83, 820-827.	8.9	62
193	CO 2 mitigation accounting for Thermal Energy Storage (TES) case studies. Applied Energy, 2015, 155, 365-377.	10.1	58
194	Phase-change materials for reducing building cooling needs. , 2015, , 381-399.		5
195	State of the art on gas–solid thermochemical energy storage systems and reactors for building applications. Renewable and Sustainable Energy Reviews, 2015, 47, 386-398.	16.4	164
196	New database to select phase change materials: Chemical nature, properties, and applications. Journal of Energy Storage, 2015, 3, 18-24.	8.1	53
197	Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties. Renewable and Sustainable Energy Reviews, 2015, 43, 1399-1414.	16.4	85
198	Corrosion of metal containers for use in PCM energy storage. Renewable Energy, 2015, 76, 465-469.	8.9	105

#	Article	IF	CITATIONS
199	Unconventional experimental technologies used for phase change materials (PCM) characterization: part 2 – morphological and structural characterization, physico-chemical stability and mechanical properties. Renewable and Sustainable Energy Reviews, 2015, 43, 1415-1426.	16.4	33
200	Composite gypsum containing fatty-ester PCM to be used as constructive system: Thermophysical characterization of two shape-stabilized formulations. Energy and Buildings, 2015, 86, 190-193.	6.7	25
201	Heating and cooling energy trends and drivers in buildings. Renewable and Sustainable Energy Reviews, 2015, 41, 85-98.	16.4	684
202	Introduction to thermal energy storage (TES) systems. , 2015, , 1-28.		47
203	Lithium in thermal energy storage: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2015, 42, 1106-1112.	16.4	92
204	Thermal energy storage (TES) systems using heat from waste. , 2015, , 479-492.		8
205	Corrosion of metals and salt hydrates used for thermochemical energy storage. Renewable Energy, 2015, 75, 519-523.	8.9	82
206	Thermophysical characterization of a by-product from the non-metallic industry as inorganic PCM. Solar Energy Materials and Solar Cells, 2015, 132, 385-391.	6.2	59
207	New Database on Phase Change Materials for Thermal Energy Storage in Buildings to Help PCM Selection. Energy Procedia, 2014, 57, 2408-2415.	1.8	44
208	Thermophysical Characterization of Sorption TCM. Energy Procedia, 2014, 48, 273-279.	1.8	15
209	Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications. Applied Energy, 2014, 125, 238-245.	10.1	97
210	Corrosion Test of Salt Hydrates and Vessel Metals for Thermochemical Energy Storage. Energy Procedia, 2014, 48, 431-435.	1.8	18
211	Use of PCM–polymer composite dense sheet including EAFD in constructive systems. Energy and Buildings, 2014, 68, 1-6.	6.7	16
212	Modeling phase change materials behavior in building applications: Comments on material characterization and model validation. Renewable Energy, 2014, 61, 132-135.	8.9	69
213	Life cycle assessment of a ventilated facade with PCM in its air chamber. Solar Energy, 2014, 104, 115-123.	6.1	47
214	Stability of sugar alcohols as PCM for thermal energy storage. Solar Energy Materials and Solar Cells, 2014, 126, 125-134.	6.2	176
215	Measurement of enthalpy curves of phase change materials via DSC and T-History: When are both methods needed to estimate the behaviour of the bulk material in applications?. Thermochimica Acta, 2014, 596, 79-88.	2.7	87
216	PCM thermal energy storage tanks in heat pump system for space cooling. Energy and Buildings, 2014, 82, 399-405.	6.7	94

#	Article	IF	CITATIONS
217	Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application. Energy Procedia, 2014, 48, 436-439.	1.8	33
218	Physicochemical and Thermal Study of a MPCM of PMMA Shell and Paraffin Wax as a Core. Energy Procedia, 2014, 48, 347-354.	1.8	20
219	Investigating greenhouse challenge from growing trends of electricity consumption through home appliances in buildings. Renewable and Sustainable Energy Reviews, 2014, 36, 188-193.	16.4	64
220	Service life of the dwelling stock in Spain. International Journal of Life Cycle Assessment, 2013, 18, 919-925.	4.7	21
221	Intercomparative tests on phase change materials characterisation with differential scanning calorimeter. Applied Energy, 2013, 109, 415-420.	10.1	117
222	Evaluation of the environmental impact of experimental buildings with different constructive systems using Material Flow Analysis and Life Cycle Assessment. Applied Energy, 2013, 109, 544-552.	10.1	67
223	Optimization of three new compositions of stabilized rammed earth incorporating PCM: Thermal properties characterization and LCA. Construction and Building Materials, 2013, 47, 872-878.	7.2	45
224	Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale. Applied Energy, 2013, 109, 428-432.	10.1	72
225	Development and characterization of new shape-stabilized phase change material (PCM)—Polymer including electrical arc furnace dust (EAFD), for acoustic and thermal comfort in buildings. Energy and Buildings, 2013, 61, 210-214.	6.7	44
226	Thermal analysis of a ventilated facade with PCM for cooling applications. Energy and Buildings, 2013, 65, 508-515.	6.7	97
227	Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale. Applied Energy, 2013, 111, 1107-1113.	10.1	62
228	Effect of d-mannitol polymorphism in its thermal energy storage capacity when it is used as PCM. Solar Energy, 2013, 94, 344-351.	6.1	62
229	Numerical study on the thermal performance of a ventilated facade with PCM. Applied Thermal Engineering, 2013, 61, 372-380.	6.0	65
230	Review of the T -history method to determine thermophysical properties of phase change materials (PCM). Renewable and Sustainable Energy Reviews, 2013, 26, 425-436.	16.4	155
231	Affordable construction towards sustainable buildings: review on embodied energy in building materials. Current Opinion in Environmental Sustainability, 2013, 5, 229-236.	6.3	47
232	A correlation of the convective heat transfer coefficient between an air flow and a phase change material plate. Applied Thermal Engineering, 2013, 51, 1245-1254.	6.0	14
233	Life Cycle Assessment of experimental cubicles including PCM manufactured from natural resources (esters): A theoretical study. Renewable Energy, 2013, 51, 398-403.	8.9	57
234	Life Cycle Assessment of alveolar brick construction system incorporating phase change materials (PCMs). Applied Energy, 2013, 101, 600-608.	10.1	65

#	Article	IF	CITATIONS
235	Corrosion of metal and polymer containers for use in PCM cold storage. Applied Energy, 2013, 109, 449-453.	10.1	81
236	Physico-chemical and mechanical properties of microencapsulated phase change material. Applied Energy, 2013, 109, 441-448.	10.1	71
237	Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials. Applied Energy, 2013, 109, 421-427.	10.1	64
238	Experimental study on the selection of phase change materials for low temperature applications. Renewable Energy, 2013, 57, 130-136.	8.9	47
239	Requirements to consider when choosing a thermochemical material for solar energy storage. Solar Energy, 2013, 97, 398-404.	6.1	41
240	Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic inorganic phase change material (PCM). Thermochimica Acta, 2013, 553, 23-26.	2.7	121
241	Material selection and testing for thermal energy storage in solar cooling. Renewable Energy, 2013, 57, 366-371.	8.9	69
242	Experimental study of a ventilated facade with PCM during winter period. Energy and Buildings, 2013, 58, 324-332.	6.7	132
243	Low carbon and low embodied energy materials in buildings: A review. Renewable and Sustainable Energy Reviews, 2013, 23, 536-542.	16.4	272
244	Phase-Change Materials Use in Nearly Zero Energy Building Refurbishment. , 2013, , 537-553.		1
245	New methodology developed for the differential scanning calorimetry analysis of polymeric matrixes incorporating phase change materials. Measurement Science and Technology, 2012, 23, 085606.	2.6	21
246	Thermal analysis of a low temperature storage unit using phase change materials without refrigeration system. International Journal of Refrigeration, 2012, 35, 1709-1714.	3.4	77
247	Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions. Renewable and Sustainable Energy Reviews, 2012, 16, 5207-5224.	16.4	307
248	Parameters to take into account when developing a new thermochemical energy storage system. Energy Procedia, 2012, 30, 380-387.	1.8	20
249	Stabilized rammed earth incorporating PCM: Optimization and improvement of thermal properties and Life Cycle Assessment. Energy Procedia, 2012, 30, 461-470.	1.8	28
250	Thermal Energy Storage Implementation Using Phase Change Materials for Solar Cooling and Refrigeration Applications. Energy Procedia, 2012, 30, 947-956.	1.8	43
251	Solar Absorption in a Ventilated Facade with PCM. Experimental Results. Energy Procedia, 2012, 30, 986-994.	1.8	17
252	Evaluation of the environmental impact of experimental cubicles using Life Cycle Assessment: A highlight on the manufacturing phase. Applied Energy, 2012, 92, 534-544.	10.1	62

#	Article	IF	CITATIONS
253	Use of microencapsulated PCM in buildings and the effect of adding awnings. Energy and Buildings, 2012, 44, 88-93.	6.7	89
254	Review of Solar Thermal Storage Techniques and Associated Heat Transfer Technologies. Proceedings of the IEEE, 2012, 100, 525-538.	21.3	70
255	New equipment for testing steady and transient thermal performance of multilayered building envelopes with PCM. Energy and Buildings, 2011, 43, 3704-3709.	6.7	33
256	Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe. Applied Energy, 2011, 88, 2764-2774.	10.1	154
257	Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 1675-1695.	16.4	1,333
258	Dynamic Thermal Response of Composite Materials. , 2011, , .		0
259	Modeling Phase Change Materials Behaviour in Building Applications: Selected Comments. , 2011, , .		0
260	Effect of microencapsulated phase change material in sandwich panels. Renewable Energy, 2010, 35, 2370-2374.	8.9	95
261	State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 2010, 14, 31-55.	16.4	1,379
262	State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renewable and Sustainable Energy Reviews, 2010, 14, 56-72.	16.4	553
263	Utilization of phase change materials in solar domestic hot water systems. Renewable Energy, 2009, 34, 1639-1643.	8.9	204
264	Heat and cold storage with PCM. Heat and Mass Transfer, 2008, , .	0.5	389
265	Use of microencapsulated PCM in concrete walls for energy savings. Energy and Buildings, 2007, 39, 113-119.	6.7	687
266	Modelization of a water tank including a PCM module. Applied Thermal Engineering, 2006, 26, 1328-1333.	6.0	103
267	Improvement of a thermal energy storage using plates with paraffin–graphite composite. International Journal of Heat and Mass Transfer, 2005, 48, 2561-2570.	4.8	172
268	Free-cooling of buildings with phase change materials. International Journal of Refrigeration, 2004, 27, 839-849.	3.4	283
269	Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 2003, 23, 251-283.	6.0	3,711
270	Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material. Applied Thermal Engineering, 2003, 23, 1697-1704.	6.0	153

#	Article	IF	CITATIONS
271	Determination of enthalpyÂtemperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties. Measurement Science and Technology, 2003, 14, 184-189.	2.6	166