List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8920739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of delay discounting as a transdiagnostic research domain criteria indicator in 1388 general community adults. Psychological Medicine, 2023, 53, 1649-1657.	4.5	12
2	Item-Level Genome-Wide Association Study of the Alcohol Use Disorders Identification Test in Three Population-Based Cohorts. American Journal of Psychiatry, 2022, 179, 58-70.	7.2	61
3	Analysis of independent cohorts of outbred CFW mice reveals novel loci for behavioral and physiological traits and identifies factors determining reproducibility. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	5
4	Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries. Genome Biology, 2022, 23, 23.	8.8	42
5	Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Frontiers in Psychiatry, 2022, 13, 790566.	2.6	6
6	SNPs, short tandem repeats, and structural variants are responsible for differential gene expression across C57BL/6 and C57BL/10 substrains. Cell Genomics, 2022, 2, 100102.	6.5	9
7	A mutant allele of glycoprotein M6â€B (<i>Gpm6b</i>) facilitates behavioral flexibility but increases delay discounting. Genes, Brain and Behavior, 2022, 21, e12800.	2.2	7
8	Leptin Protects Against the Development and Expression of Cocaine Addiction-Like Behavior in Heterogeneous Stock Rats. Frontiers in Behavioral Neuroscience, 2022, 16, 832899.	2.0	5
9	Genomeâ€wide association mapping of ethanol sensitivity in the Diversity Outbred mouse population. Alcoholism: Clinical and Experimental Research, 2022, 46, 941-960.	2.4	2
10	A natural mutator allele shapes mutation spectrum variation in mice. Nature, 2022, 605, 497-502.	27.8	38
11	Glucocorticoid Receptor-Regulated Enhancers Play a Central Role in the Gene Regulatory Networks Underlying Drug Addiction. Frontiers in Neuroscience, 2022, 16, .	2.8	7
12	Accelerating Opioid Use Disorders Research by Integrating Multiple Data Modalities. Complex Psychiatry, 2022, 8, 1-8.	0.9	1
13	Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies. PLoS Genetics, 2022, 18, e1010234.	3.5	27
14	Cross-ancestry genomic research: time to close the gap. Neuropsychopharmacology, 2022, 47, 1737-1738.	5.4	7
15	Multivariate GWAS of psychiatric disorders and their cardinal symptoms reveal two dimensions of cross-cutting genetic liabilities. Cell Genomics, 2022, 2, 100140.	6.5	32
16	Genetic risk for major depressive disorder and loneliness in sex-specific associations with coronary artery disease. Molecular Psychiatry, 2021, 26, 4254-4264.	7.9	26
17	Polygenic contributions to alcohol use and alcohol use disorders across population-based and clinically ascertained samples. Psychological Medicine, 2021, 51, 1147-1156.	4.5	18
18	Genetic and Pharmacological Manipulations of Glyoxalase 1 Mediate Ethanol Withdrawal Seizure Susceptibility in Mice. Brain Sciences, 2021, 11, 127.	2.3	3

#	Article	IF	CITATIONS
19	The Cocaine and Oxycodone Biobanks, Two Repositories from Genetically Diverse and Behaviorally Characterized Rats for the Study of Addiction. ENeuro, 2021, 8, ENEURO.0033-21.2021.	1.9	16
20	Integration of evidence across human and model organism studies: A meeting report. Genes, Brain and Behavior, 2021, 20, e12738.	2.2	12
21	Mapping Pathways by Which Genetic Risk Influences Adolescent Externalizing Behavior: The Interplay Between Externalizing Polygenic Risk Scores, Parental Knowledge, and Peer Substance Use. Behavior Genetics, 2021, 51, 543-558.	2.1	13
22	Functional validation of a finding from a mouse genomeâ€wide association study shows that Azi2 influences the acute locomotor simulant response to methamphetamine. Genes, Brain and Behavior, 2021, 20, e12760.	2.2	5
23	Dissecting indirect genetic effects from peers in laboratory mice. Genome Biology, 2021, 22, 216.	8.8	5
24	Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nature Neuroscience, 2021, 24, 1367-1376.	14.8	137
25	Sensitivity to food and cocaine cues are independent traits in a large sample of heterogeneous stock rats. Scientific Reports, 2021, 11, 2223.	3.3	13
26	Genome-wide association study of problematic opioid prescription use in 132,113 23andMe research participants of European ancestry. Molecular Psychiatry, 2021, 26, 6209-6217.	7.9	26
27	Genes identified in rodent studies of alcohol intake are enriched for heritability of human substance use. Alcoholism: Clinical and Experimental Research, 2021, 45, 2485-2494.	2.4	5
28	Recent Efforts to Dissect the Genetic Basis of Alcohol Use and Abuse. Biological Psychiatry, 2020, 87, 609-618.	1.3	68
29	Assessing the motivational effects of ethanol in mice using a discrete-trial current-intensity intracranial self-stimulation procedure. Drug and Alcohol Dependence, 2020, 207, 107806.	3.2	2
30	Genome-Wide Association Study in Two Cohorts from a Multi-generational Mouse Advanced Intercross Line Highlights the Difficulty of Replication Due to Study-Specific Heterogeneity. G3: Genes, Genomes, Genetics, 2020, 10, 951-965.	1.8	9
31	Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics, 2020, 216, 905-930.	2.9	58
32	A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry,the, 2020, 7, 1032-1045.	7.4	200
33	Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats. EBioMedicine, 2020, 55, 102769.	6.1	36
34	The Latent Genetic Structure of Impulsivity and Its Relation to Internalizing Psychopathology. Psychological Science, 2020, 31, 1025-1035.	3.3	24
35	ACNP efforts toward reducing climate change. Neuropsychopharmacology, 2020, 45, 2137-2138.	5.4	0
36	Genomeâ€Wide Association Study in 3,173 Outbred Rats Identifies Multiple Loci for Body Weight, Adiposity, and Fasting Glucose. Obesity, 2020, 28, 1964-1973.	3.0	56

#	Article	IF	CITATIONS
37	Adapting Genotyping-by-Sequencing and Variant Calling for Heterogeneous Stock Rats. G3: Genes, Genomes, Genetics, 2020, 10, 2195-2205.	1.8	19
38	Emerging phenotyping strategies will advance our understanding of psychiatric genetics. Nature Neuroscience, 2020, 23, 475-480.	14.8	41
39	Nociceptin attenuates the escalation of oxycodone self-administration by normalizing CeA–GABA transmission in highly addicted rats. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2140-2148.	7.1	35
40	Steep Discounting of Future Rewards as an Impulsivity Phenotype: A Concise Review. Current Topics in Behavioral Neurosciences, 2020, 47, 113-138.	1.7	16
41	Multidimensional latent structure of risk-related phenotypes in healthy young adults Experimental and Clinical Psychopharmacology, 2020, 28, 55-64.	1.8	3
42	Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nature Neuroscience, 2020, 23, 809-818.	14.8	242
43	Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for "polygenic epistasis― PLoS Genetics, 2020, 16, e1009165.	3.5	7
44	Metal-Binding Pharmacophore Library Yields the Discovery of a Glyoxalase 1 Inhibitor. Journal of Medicinal Chemistry, 2019, 62, 1609-1625.	6.4	32
45	Phenome-wide investigation of health outcomes associated with genetic predisposition to loneliness. Human Molecular Genetics, 2019, 28, 3853-3865.	2.9	62
46	Genome-wide association studies of impulsive personality traits (BIS-11 and UPPSP) and drug experimentation in up to 22,861 adult research participants identify loci in the <i>CACNA1I</i> and <i>CADM2</i> genes. Journal of Neuroscience, 2019, 39, 2662-18.	3.6	128
47	Genomic basis of delayed reward discounting. Behavioural Processes, 2019, 162, 157-161.	1.1	10
48	Incentive salience attribution, "sensation-seeking―and "novelty-seeking―are independent traits in a large sample of male and female heterogeneous stock rats. Scientific Reports, 2019, 9, 2351.	3.3	40
49	Electronic Health Records Are the Next Frontier for the Genetics of Substance Use Disorders. Trends in Genetics, 2019, 35, 317-318.	6.7	7
50	Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and STC2. American Journal of Human Genetics, 2019, 105, 1222-1236.	6.2	41
51	Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 2019, 51, 245-257.	21.4	536
52	Genome-Wide Association Study Meta-Analysis of the Alcohol Use Disorders Identification Test (AUDIT) in Two Population-Based Cohorts. American Journal of Psychiatry, 2019, 176, 107-118.	7.2	326
53	Genomeâ€wide association study of alcohol use disorder identification test (AUDIT) scores in 20Â328 research participants of European ancestry. Addiction Biology, 2019, 24, 121-131.	2.6	84
54	Using Heterogeneous Stocks for Fine-Mapping Genetically Complex Traits. Methods in Molecular Biology, 2019, 2018, 233-247.	0.9	59

#	Article	IF	CITATIONS
55	Genetic influences on delayed reward discounting: A genome-wide prioritized subset approach Experimental and Clinical Psychopharmacology, 2019, 27, 29-37.	1.8	10
56	Behavioral Genetic Studies in Rats. Methods in Molecular Biology, 2019, 2018, 319-326.	0.9	6
57	Glyoxalase 1 (GLO1) Inhibition or Genetic Overexpression Does Not Alter Ethanol's Locomotor Effects: Implications for <scp>GLO</scp> 1 as a Therapeutic Target in Alcohol Use Disorders. Alcoholism: Clinical and Experimental Research, 2018, 42, 869-878.	2.4	8
58	Inhibition of Glyoxalase 1 reduces alcohol self-administration in dependent and nondependent rats. Pharmacology Biochemistry and Behavior, 2018, 167, 36-41.	2.9	11
59	Identification of a novel, fast-acting GABAergic antidepressant. Molecular Psychiatry, 2018, 23, 384-391.	7.9	36
60	Impulsivity as a mechanism linking child abuse and neglect with substance use in adolescence and adulthood. Development and Psychopathology, 2018, 30, 417-435.	2.3	92
61	Heterogeneous stock rats: a model to study the genetics of despairâ€like behavior in adolescence. Genes, Brain and Behavior, 2018, 17, 139-148.	2.2	24
62	Genome-wide association study of delay discounting in 23,217 adult research participants of European ancestry. Nature Neuroscience, 2018, 21, 16-18.	14.8	98
63	The genetics of human personality. Genes, Brain and Behavior, 2018, 17, e12439.	2.2	134
64	Genetic analysis of impulsive personality traits: Examination of a priori candidates and genome-wide variation. Psychiatry Research, 2018, 259, 398-404.	3.3	34
65	Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nature Neuroscience, 2018, 21, 1656-1669.	14.8	490
66	Social and anxiety-like behaviors contribute to nicotine self-administration in adolescent outbred rats. Scientific Reports, 2018, 8, 18069.	3.3	24
67	Genome wide association analysis in a mouse advanced intercross line. Nature Communications, 2018, 9, 5162.	12.8	47
68	GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal effect of schizophrenia liability. Nature Neuroscience, 2018, 21, 1161-1170.	14.8	436
69	Genetic and pharmacological manipulation of <i>glyoxalase 1</i> regulates voluntary ethanol consumption in mice. Addiction Biology, 2017, 22, 381-389.	2.6	13
70	Fine-mapping of genes determining extrafusal fiber properties in murine soleus muscle. Physiological Genomics, 2017, 49, 141-150.	2.3	12
71	<i>Cdh13</i> and <i><scp>AdipoQ</scp></i> gene knockout alter instrumental and Pavlovian drug conditioning. Genes, Brain and Behavior, 2017, 16, 686-698.	2.2	13
72	Genetic influences on ADHD symptom dimensions: Examination of a priori candidates, geneâ€based tests, genomeâ€wide variation, and SNP heritability. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 458-466.	1.7	20

#	Article	IF	CITATIONS
73	Sexâ€specific linkage scans in opioid dependence. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 261-268.	1.7	10
74	Genome-Wide Association Study of Loneliness Demonstrates a Role for Common Variation. Neuropsychopharmacology, 2017, 42, 811-821.	5.4	75
75	Hierarchical investigation of genetic influences on response inhibition in healthy young adults Experimental and Clinical Psychopharmacology, 2017, 25, 512-520.	1.8	14
76	Systems genetic and pharmacological analysis identifies candidate genes underlying mechanosensation in the von Frey test. Genes, Brain and Behavior, 2016, 15, 604-615.	2.2	9
77	Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nature Genetics, 2016, 48, 919-926.	21.4	119
78	Integration of genomeâ€wide association and extant brain expression <scp>QTL</scp> identifies candidate genes influencing prepulse inhibition in inbred <scp>F₁</scp> mice. Genes, Brain and Behavior, 2016, 15, 260-270.	2.2	6
79	Syntax for calculation of discounting indices from the monetary choice questionnaire and probability discounting questionnaire. Journal of the Experimental Analysis of Behavior, 2016, 106, 156-163.	1.1	95
80	Genetic Background Limits Generalizability of Genotype-Phenotype Relationships. Neuron, 2016, 91, 1253-1259.	8.1	209
81	The latent structure of impulsivity: impulsive choice, impulsive action, and impulsive personality traits. Psychopharmacology, 2016, 233, 3361-3370.	3.1	302
82	Premature responding is associated with approach to a food cue in male and female heterogeneous stock rats. Psychopharmacology, 2016, 233, 2593-2605.	3.1	31
83	Interrelationships among parental family history of substance misuse, delay discounting, and personal substance use. Psychopharmacology, 2016, 233, 39-48.	3.1	50
84	Individual differences in timing of peak positive subjective responses to d-amphetamine: Relationship to pharmacokinetics and physiology. Journal of Psychopharmacology, 2016, 30, 330-343.	4.0	9
85	Neuronal overexpression of Glo1 or amygdalar microinjection of methylglyoxal is sufficient to regulate anxiety-like behavior in mice. Behavioural Brain Research, 2016, 301, 119-123.	2.2	25
86	A dendritic organization of lateral amygdala neurons in fear susceptible and resistant mice. Neurobiology of Learning and Memory, 2016, 127, 64-71.	1.9	7
87	Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium. Behavior Genetics, 2016, 46, 170-182.	2.1	178
88	Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination. PLoS Genetics, 2015, 11, e1005607.	3.5	67
89	Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder. JAMA Psychiatry, 2015, 72, 642.	11.0	289
90	Hnrnph1 Is A Quantitative Trait Gene for Methamphetamine Sensitivity. PLoS Genetics, 2015, 11, e1005713.	3.5	57

#	Article	IF	CITATIONS
91	Quantitative Trait Locus Mapping Methods for Diversity Outbred Mice. G3: Genes, Genomes, Genetics, 2014, 4, 1623-1633.	1.8	195
92	Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ. Mammalian Genome, 2014, 25, 564-572.	2.2	18
93	Genetic Variation for Life History Sensitivity to Seasonal Warming in <i>Arabidopsis thaliana</i> . Genetics, 2014, 196, 569-577.	2.9	69
94	Discovery and refinement of muscle weight QTLs in B6 × D2 advanced intercross mice. Physiological Genomics, 2014, 46, 571-582.	2.3	11
95	High-Resolution Genetic Mapping of Complex Traits from a Combined Analysis of F2 and Advanced Intercross Mice. Genetics, 2014, 198, 103-116.	2.9	46
96	Social neuroscience and its potential contribution to psychiatry. World Psychiatry, 2014, 13, 131-139.	10.4	56
97	A locus on mouse Ch10 influences susceptibility to limbic seizure severity: fine mapping and <i>in silico</i> candidate gene analysis. Genes, Brain and Behavior, 2014, 13, 341-349.	2.2	4
98	Propensity for social interaction predicts nicotineâ€reinforced behaviors in outbred rats. Genes, Brain and Behavior, 2014, 13, 202-212.	2.2	32
99	Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6004-6009.	7.1	117
100	Rats are the smart choice: Rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology, 2014, 76, 250-258.	4.1	78
101	Genetic variation associated with euphorigenic effects of <i>d</i> -amphetamine is associated with diminished risk for schizophrenia and attention deficit hyperactivity disorder. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5968-5973.	7.1	18
102	Glo1 inhibitors for neuropsychiatric and anti-epileptic drug development. Biochemical Society Transactions, 2014, 42, 461-467.	3.4	19
103	Mice selectively bred for High and Low fear behavior show differences in the number of pMAPK (p44/42) Tj ETQq1 Learning and Memory, 2014, 112, 195-203.	1 0.7843 1.9	314 rgBT /O∨ 7
104	Fine-mapping QTLs in advanced intercross lines and other outbred populations. Mammalian Genome, 2014, 25, 271-292.	2.2	25
105	The Circadian Clock Gene Csnk1e Regulates Rapid Eye Movement Sleep Amount, and Nonrapid Eye Movement Sleep Architecture in Mice. Sleep, 2014, 37, 785-793.	1.1	18
106	Psychopharmacology of theobromine in healthy volunteers. Psychopharmacology, 2013, 228, 109-118.	3.1	70
107	Does <scp>COMT</scp> genotype influence the effects ofÂ <i>d</i> â€amphetamine on executive functioning?. Genes, Brain and Behavior, 2013, 12, 13-20.	2.2	23
108	Candidate Gene Studies of a Promising Intermediate Phenotype: Failure to Replicate. Neuropsychopharmacology, 2013, 38, 802-816.	5.4	69

#	Article	IF	CITATIONS
109	A Simulation Study of Permutation, Bootstrap, and Gene Dropping for Assessing Statistical Significance in the Case of Unequal Relatedness. Genetics, 2013, 193, 1015-1018.	2.9	51
110	Practical Considerations Regarding the Use of Genotype and Pedigree Data to Model Relatedness in the Context of Genome-Wide Association Studies. G3: Genes, Genomes, Genetics, 2013, 3, 1861-1867.	1.8	58
111	Glyoxalase 1 and its substrate methylglyoxal are novel regulators of seizure susceptibility. Epilepsia, 2013, 54, 649-657.	5.1	29
112	Strong genetic influences on measures of behavioralâ€regulation among inbred rat strains. Genes, Brain and Behavior, 2013, 12, 490-502.	2.2	37
113	Traits of fear resistance and susceptibility in an advanced intercross line. European Journal of Neuroscience, 2013, 38, 3314-3324.	2.6	17
114	A large <scp>QTL</scp> for fear and anxiety mapped using an <scp>F₂</scp> cross can be dissected into multiple smaller <scp>QTLs</scp> . Genes, Brain and Behavior, 2013, 12, 714-722.	2.2	13
115	Variation in the Form of Pavlovian Conditioned Approach Behavior among Outbred Male Sprague-Dawley Rats from Different Vendors and Colonies: Sign-Tracking vs. Goal-Tracking. PLoS ONE, 2013, 8, e75042.	2.5	116
116	Rufy1 or Hnrnph1 is a likely quantitative trait gene for methamphetamine sensitivity. FASEB Journal, 2013, 27, lb472.	0.5	0
117	Csnk1e Is a Genetic Regulator of Sensitivity to Psychostimulants and Opioids. Neuropsychopharmacology, 2012, 37, 1026-1035.	5.4	60
118	High-Resolution Genetic Mapping Using the Mouse Diversity Outbred Population. Genetics, 2012, 190, 437-447.	2.9	437
119	Pavlovian fear memory circuits and phenotype models of PTSD. Neuropharmacology, 2012, 62, 638-646.	4.1	106
120	Genome-Wide Association Study of d-Amphetamine Response in Healthy Volunteers Identifies Putative Associations, Including Cadherin 13 (CDH13). PLoS ONE, 2012, 7, e42646.	2.5	74
121	Assessment of Behaviors Modeling Aspects of Schizophrenia in Csmd1 Mutant Mice. PLoS ONE, 2012, 7, e51235.	2.5	23
122	Methamphetamine-induced conditioned place preference in LG/J and SM/J mouse strains and an F45/F46 advanced intercross line. Frontiers in Genetics, 2012, 3, 126.	2.3	16
123	Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in behavior: recent advances and mechanistic insights. Frontiers in Genetics, 2012, 3, 250.	2.3	83
124	QTLs for murine red blood cell parameters in LG/J and SM/J F2 and advanced intercross lines. Mammalian Genome, 2012, 23, 356-366.	2.2	7
125	Translational genetic approaches to substance use disorders: bridging the gap between mice and humans. Human Genetics, 2012, 131, 931-939.	3.8	9
126	Genome-Wide Association for Fear Conditioning in an Advanced Intercross Mouse Line. Behavior Genetics, 2012, 42, 437-448.	2.1	44

#	Article	IF	CITATIONS
127	Genomeâ€wide association for methamphetamine sensitivity in an advanced intercross mouse line. Genes, Brain and Behavior, 2012, 11, 52-61.	2.2	38
128	Congenic dissection of a major QTL for methamphetamine sensitivity implicates epistasis. Genes, Brain and Behavior, 2012, 11, 623-632.	2.2	23
129	Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal. Journal of Clinical Investigation, 2012, 122, 2306-2315.	8.2	124
130	QTLRel: an R Package for Genome-wide Association Studies in which Relatedness is a Concern. BMC Genetics, 2011, 12, 66.	2.7	71
131	Dark Matter: Are Mice the Solution to Missing Heritability?. Frontiers in Genetics, 2011, 2, 32.	2.3	49
132	Casein kinase 1 enables nucleus accumbens amphetamineâ€induced locomotion by regulating AMPA receptor phosphorylation. Journal of Neurochemistry, 2011, 118, 237-247.	3.9	32
133	Mapping a mouse limbic seizure susceptibility locus on chromosome 10. Epilepsia, 2011, 52, 2076-2083.	5.1	13
134	OPRM1 gene variants modulate amphetamine-induced euphoria in humans. Genes, Brain and Behavior, 2011, 10, 199-209.	2.2	44
135	Anxiety and fear in a cross of C57BL/6J and DBA/2J mice: mapping overlapping and independent QTL for related traits. Genes, Brain and Behavior, 2011, 10, 604-614.	2.2	23
136	Genetic determinants for intramuscular fat content and water-holding capacity in mice selected for high muscle mass. Mammalian Genome, 2011, 22, 530-543.	2.2	32
137	Fine-mapping alleles for body weight in LC/J × SM/J F2 and F34 advanced intercross lines. Mammalian Genome, 2011, 22, 563-571.	2.2	31
138	Genetic Factors Modulating the Response to Stimulant Drugs in Humans. Current Topics in Behavioral Neurosciences, 2011, 12, 537-577.	1.7	30
139	Genetic analysis in the Collaborative Cross breeding population. Genome Research, 2011, 21, 1223-1238.	5.5	158
140	Distinct genetic regions modify specific muscle groups in muscular dystrophy. Physiological Genomics, 2011, 43, 24-31.	2.3	27
141	QTL analysis of type I and Type IIA fibers in soleus muscle in a cross between LG/J and SM/J mouse strains. Frontiers in Genetics, 2011, 2, 99.	2.3	22
142	Modulation of Tcf7l2 Expression Alters Behavior in Mice. PLoS ONE, 2011, 6, e26897.	2.5	21
143	Are attention lapses related to d-amphetamine liking?. Psychopharmacology, 2010, 208, 201-209.	3.1	13
144	Genetics of caffeine consumption and responses to caffeine. Psychopharmacology, 2010, 211, 245-257.	3.1	215

#	Article	IF	CITATIONS
145	More on ADORA. Psychopharmacology, 2010, 212, 699-700.	3.1	2
146	Differences in Aggressive Behavior and DNA Copy Number Variants Between BALB/cJ and BALB/cByJ Substrains. Behavior Genetics, 2010, 40, 201-210.	2.1	53
147	Polymorphisms in Dopamine Transporter (SLC6A3) are Associated with Stimulant Effects of d-Amphetamine: An Exploratory Pharmacogenetic Study Using Healthy Volunteers. Behavior Genetics, 2010, 40, 255-261.	2.1	24
148	Fine mapping of QTL for prepulse inhibition in LG/J and SM/J mice using F ₂ and advanced intercross lines. Genes, Brain and Behavior, 2010, 9, 759-767.	2.2	34
149	Murine Warriors or Worriers: The Saga of Comt1, B2 SINE Elements, and the Future of Translational Genetics. Frontiers in Neuroscience, 2010, 4, 177.	2.8	7
150	Genome-Wide Association Studies and the Problem of Relatedness Among Advanced Intercross Lines and Other Highly Recombinant Populations. Genetics, 2010, 185, 1033-1044.	2.9	99
151	More Aroused, Less Fatigued: Fatty Acid Amide Hydrolase Gene Polymorphisms Influence Acute Response to Amphetamine. Neuropsychopharmacology, 2010, 35, 613-622.	5.4	29
152	Fine-mapping of muscle weight QTL in LG/J and SM/J intercrosses. Physiological Genomics, 2010, 42A, 33-38.	2.3	38
153	Catechol-O-methyltransferase val158met genotype modulates sustained attention in both the drug-free state and in response to amphetamine. Psychiatric Genetics, 2010, 20, 85-92.	1.1	51
154	Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies. PLoS ONE, 2009, 4, e4729.	2.5	123
155	Negative emotionality: monoamine oxidase B gene variants modulate personality traits in healthy humans. Journal of Neural Transmission, 2009, 116, 1323-1334.	2.8	38
156	A role for casein kinase 1 epsilon in the locomotor stimulant response to methamphetamine. Psychopharmacology, 2009, 203, 703-711.	3.1	42
157	Further evidence of association between amphetamine response and SLC6A2 gene variants. Psychopharmacology, 2009, 206, 501-511.	3.1	41
158	A major QTL on chromosome 11 influences psychostimulant and opioid sensitivity in mice. Genes, Brain and Behavior, 2009, 8, 795-805.	2.2	31
159	Evaluation of genetic variability in the dopamine receptor D2 in relation to behavioral inhibition and impulsivity/sensation seeking: An exploratory study with d-amphetamine in healthy participants Experimental and Clinical Psychopharmacology, 2009, 17, 374-383.	1.8	98
160	Latent TGF-β–binding protein 4 modifies muscular dystrophy in mice. Journal of Clinical Investigation, 2009, 119, 3703-3712.	8.2	172
161	A Common and Unstable Copy Number Variant Is Associated with Differences in Glo1 Expression and Anxiety-Like Behavior. PLoS ONE, 2009, 4, e4649.	2.5	108
162	Rapid Selection Response for Contextual Fear Conditioning in a Cross Between C57BL/6J and A/J: Behavioral, QTL and Gene Expression Analysis. Behavior Genetics, 2008, 38, 277-291.	2.1	22

#	Article	IF	CITATIONS
163	Prenatal protein deprivation alters dopamine-mediated behaviors and dopaminergic and glutamatergic receptor binding. Brain Research, 2008, 1237, 62-74.	2.2	56
164	Behavioral Differences among C57BL/6 Substrains: Implications for Transgenic and Knockout Studies. Journal of Neurogenetics, 2008, 22, 315-331.	1.4	177
165	Significance Thresholds for Quantitative Trait Locus Mapping Under Selective Genotyping. Genetics, 2007, 177, 1963-1966.	2.9	25
166	Acute and chronic responses to the convulsant pilocarpine in DBA/2J and A/J mice. Neuroscience, 2007, 149, 465-475.	2.3	37
167	Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression. Genes, Brain and Behavior, 2007, 6, 736-749.	2.2	87
168	Use of chromosome substitution strains to identify seizure susceptibility loci in mice. Mammalian Genome, 2007, 18, 23-31.	2.2	22
169	Genetic architecture of fear conditioning in chromosome substitution strains: relationship to measures of innate (unlearned) anxiety-like behavior. Mammalian Genome, 2007, 18, 221-228.	2.2	23
170	Hardy–Weinberg disequilibrium identified genotyping error of the serotonin transporter (SLC6A4) promoter polymorphism. Psychiatric Genetics, 2006, 16, 31-34.	1.1	69
171	Sensitivity to the locomotor-stimulant effects of ethanol and allopregnanolone: a quantitative trait locus study of common genetic influence. Genes, Brain and Behavior, 2006, 5, 506-517.	2.2	22
172	Association between the Casein Kinase 1 Epsilon Gene Region and Subjective Response to D-Amphetamine. Neuropsychopharmacology, 2006, 31, 1056-1063.	5.4	56
173	Gene expression differences in mice divergently selected for methamphetamine sensitivity. Mammalian Genome, 2005, 16, 291-305.	2.2	84
174	Behavioral sensitization to ethanol is modulated by environmental conditions, but is not associated with cross-sensitization to allopregnanolone or pentobarbital in DBA/2J mice. Neuroscience, 2005, 131, 263-273.	2.3	22
175	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	21.4	1,034
176	Prenatal protein deprivation in rats induces changes in prepulse inhibition and NMDA receptor binding. Brain Research, 2004, 996, 193-201.	2.2	79
177	Corticotropin-releasing factor overexpression decreases ethanol drinking and increases sensitivity to the sedative effects of ethanol. Psychopharmacology, 2004, 176, 386-397.	3.1	40
178	Effects of a Drd2 deletion mutation on ethanol-induced locomotor stimulation and sensitization suggest a role for epistasis. Behavior Genetics, 2003, 33, 311-324.	2.1	50
179	Identification of quantitative trait loci for prepulse inhibition in rats. Psychopharmacology, 2003, 165, 270-279.	3.1	34
180	Bioinformatic analysis of autism positional candidate genes using biological databases and computational gene network prediction. Genes, Brain and Behavior, 2003, 2, 303-320.	2.2	53

#	Article	IF	CITATIONS
181	Reverse Selection for Differential Response to the Locomotor Stimulant Effects of Ethanol Provides Evidence for Pleiotropic Genetic Influence on Locomotor Response to Other Drugs of Abuse. Alcoholism: Clinical and Experimental Research, 2003, 27, 1535-1547.	2.4	35
182	The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics, 2003, 4, 911-916.	16.3	390
183	A Genomewide Screen of 345 Families for Autism-Susceptibility Loci. American Journal of Human Genetics, 2003, 73, 886-897.	6.2	247
184	Inappropriate Choice of the Experimental Unit Leads to a Dramatic Overestimation of the Significance of Quantitative Trait Loci for Prepulse Inhibition and Startle Response in Recombinant Congenic Mice. Neuropsychopharmacology, 2003, 28, 818-818.	5.4	8
185	Sensitivity to the locomotor stimulant effects of ethanol and allopregnanolone is influenced by common genes Behavioral Neuroscience, 2002, 116, 126-137.	1.2	25
186	Locomotor activity responses to ethanol, other alcohols and GABA-A acting compounds in forward- and reverse-selected FAST and SLOW mouse lines Behavioral Neuroscience, 2002, 116, 958-967.	1.2	23
187	DIFFERENCES BETWEEN SHR AND WKY FOLLOWING THE AIRPUFF STARTLE STIMULUS IN THE NUMBER OF FOS EXPRESSING, RVLM PROJECTING NEURONS. Clinical and Experimental Hypertension, 2002, 24, 125-139.	1.3	5
188	Initial sensitivity, tolerance and cross-tolerance to allopregnanolone- and ethanol-induced hypothermia in selected mouse lines. Psychopharmacology, 2002, 162, 313-322.	3.1	30
189	Photochemical Control of the Infectivity of Adenoviral Vectors Using a Novel Photocleavable Biotinylation Reagent. Chemistry and Biology, 2002, 9, 567-573.	6.0	17
190	Forward, Relaxed, and Reverse Selection for Reduced and Enhanced Sensitivity to Ethanol's Locomotor Stimulant Effects in Mice. Alcoholism: Clinical and Experimental Research, 2002, 26, 593-602.	2.4	23
191	Effect of Forward and Reverse Selection for Ethanol-Induced Locomotor Response on Other Measures of Ethanol Sensitivity. Alcoholism: Clinical and Experimental Research, 2002, 26, 1322-1329.	2.4	8
192	Forward, Relaxed, and Reverse Selection for Reduced and Enhanced Sensitivity to Ethanol???s Locomotor Stimulant Effects in Mice. Alcoholism: Clinical and Experimental Research, 2002, 26, 593-602.	2.4	2
193	Forward, relaxed, and reverse selection for reduced and enhanced sensitivity to ethanol's locomotor stimulant effects in mice. Alcoholism: Clinical and Experimental Research, 2002, 26, 593-602.	2.4	19
194	Sensitivity to the locomotor stimulant effects of ethanol and allopregnanolone is influenced by common genes Behavioral Neuroscience, 2002, 116, 126-137.	1.2	14
195	Locomotor activity responses to ethanol, other alcohols and GABA-A acting compounds in forward- and reverse-selected FAST and SLOW mouse lines Behavioral Neuroscience, 2002, 116, 958-967.	1.2	16
196	Effect of forward and reverse selection for ethanol-induced locomotor response on other measures of ethanol sensitivity. Alcoholism: Clinical and Experimental Research, 2002, 26, 1322-9.	2.4	3
197	Voluntary ethanol drinking in C57BL/6J and DBA/2J mice before and after sensitization to the locomotor stimulant effects of ethanol. Psychopharmacology, 2001, 155, 91-99.	3.1	110
198	Latent inhibition and conditioning in rat strains which show differential prepulse inhibition. Behavior Genetics, 2001, 31, 325-333.	2.1	20

#	Article	IF	CITATIONS
199	Prepulse startle deficit in the Brown Norway rat: A potential genetic model Behavioral Neuroscience, 2000, 114, 374-388.	1.2	74
200	Prepulse startle deficit in the Brown Norway rat: A potential genetic model Behavioral Neuroscience, 2000, 114, 374-388.	1.2	33
201	Airpuff Startle Stress Elicited Fos Expression in Brain Cardiovascular Areas of Young Shr and Wky Rats. Clinical and Experimental Hypertension, 1999, 21, 1061-1081.	1.3	13
202	Strain differences in Fos expression following airpuff startle in Spontaneously Hypertensive and Wistar Kyoto rats. Neuroscience, 1999, 89, 965-978.	2.3	36
203	Attenuation of Fos expression to airpuff startle stimuli following tympanic membrane rupture. Brain Research, 1998, 787, 91-98.	2.2	8
204	Angiotensin II receptor binding sites in the ventral portion of the bed nucleus of the stria terminalis are reduced by interruption of the medial forebrain bundle. Brain Research, 1998, 809, 5-11.	2.2	8
205	DIFFERENCES IN CULTURED CARDIAC FIBROBLAST POPULATIONS ISOLATED FROM SHR AND WKY RATS. Clinical and Experimental Pharmacology and Physiology, 1995, 22, S265-S267.	1.9	6
206	Involvement of Central Corticotropin-Releasing Factor (CRF) in Suckling-Induced Inhibition of Luteinizing Hormone Secretion in Lactating Rats. Journal of Neuroendocrinology, 1993, 5, 451-459.	2.6	11