Alain Walcarius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8920322/publications.pdf

Version: 2024-02-01

278 papers 14,382 citations

61 h-index 27406 106 g-index

289 all docs

289 docs citations

times ranked

289

11085 citing authors

#	Article	IF	Citations
1	A hybrid electrochemical flow reactor to couple H ₂ oxidation to NADH regeneration for biochemical reactions. Electrochemical Science Advances, 2022, 2, e202100012.	2.8	3
2	Preparation of Functionalized <i>Ayous</i> Sawdustâ€carbon Nanotubes Composite for the Electrochemical Determination of Carbendazim Pesticide. Electroanalysis, 2022, 34, 667-676.	2.9	9
3	Multiphase chemical engineering as a tool in modelling electromediated reactions- example of Rh complex-mediated regeneration of NADH. Chemical Engineering Science, 2022, 247, 117055.	3.8	2
4	Fabrication of Polyaniline (PANI) through Parallel Nanopores: Charge Transport Properties of PANI@SiO ₂ Nanopore Molecular Junctions. ECS Journal of Solid State Science and Technology, 2022, 11, 065009.	1.8	2
5	Electrochemically Assisted Deposition of Nanoporous Silica Membranes on Gold Electrodes: Effect of 3â€Mercaptopropyl(trimethoxysilane) "Molecular Glue―on Film Formation, Permeability and Metal Underpotential Deposition. ChemElectroChem, 2021, 8, 142-150.	3.4	8
6	A Sensitive Electrochemical Sensor for Moxifloxacin Hydrochloride Based on Nafion/Graphene Oxide/Zeolite Modified Carbon Paste Electrode. Electroanalysis, 2021, 33, 964-974.	2.9	20
7	Electrografting and electropolymerization of nanoarrays of PANI filaments through silica mesochannels. Electrochemistry Communications, 2021, 122, 106896.	4.7	15
8	Electron transfers in graphitized HZSM-5 zeolites. Physical Chemistry Chemical Physics, 2021, 23, 1914-1922.	2.8	1
9	Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage. Electrochimica Acta, 2021, 366, 137407.	5. 2	8
10	Electrochemically assisted polyamide deposition at three-phase junction. Electrochemistry Communications, 2021, 123, 106910.	4.7	5
11	Electrogeneration of a Free-Standing Cytochrome c─Silica Matrix at a Soft Electrified Interface. Langmuir, 2021, 37, 4033-4041.	3.5	9
12	Synthesis of Vertically Aligned Porous Silica Thin Films Functionalized by Silver Ions. International Journal of Molecular Sciences, 2021, 22, 7505.	4.1	4
13	Electroinduced Surfactant Self-Assembly Driven to Vertical Growth of Oriented Mesoporous Films. Accounts of Chemical Research, 2021, 54, 3563-3575.	15.6	38
14	Electrochemical stripping analysis from micro-counter electrode. Electrochimica Acta, 2021, 393, 139095.	5.2	3
15	Polyaniline nanowire arrays generated through oriented mesoporous silica films: effect of pore size and spectroelectrochemical response. Faraday Discussions, 2021, 233, 77-99.	3.2	7
16	Switchable voltammetric response of electrodes modified with a mesoporous silica thin film and a polyelectrolyte multilayer. Electrochemistry Communications, 2021, 132, 107142.	4.7	1
17	Multiâ€stimuli Photo and Redoxâ€active Nanostructured Mesoporous Silica Films on Transparent Electrodes. ChemPhysChem, 2021, 22, 2464-2477.	2.1	4
18	Voltammetric detection of caffeine in pharmacological and beverages samples based on simple nano-Co (II, III) oxide modified carbon paste electrode in aqueous and micellar media. Sensors and Actuators B: Chemical, 2020, 302, 127172.	7.8	49

#	Article	IF	CITATIONS
19	Nonâ€covalent Immobilization of Ironâ€triazole (Fe(Htrz) ₃) Molecular Mediator in Mesoporous Silica Films for the Electrochemical Detection of Hydrogen Peroxide. Electroanalysis, 2020, 32, 690-697.	2.9	14
20	Bis(terpyridine) Iron(II) Functionalized Vertically-Oriented Nanostructured Silica Films: Toward Electrochromic Materials. Frontiers in Chemistry, 2020, 8, 830.	3.6	14
21	An imidazolium ionic liquid as effective structure-directing agent for the fabrication of silica thin films with vertically aligned nanochannels. Microporous and Mesoporous Materials, 2020, , 110407.	4.4	8
22	Local removal of oxygen for NAD(P)+ detection in aerated solutions. Electrochimica Acta, 2020, 353, 136546.	5.2	5
23	Signal amplification by electro-oligomerisation for improved isoproturon detection. Talanta, 2020, 220, 121347.	5.5	11
24	Redox-Active Vertically Aligned Mesoporous Silica Thin Films as Transparent Surfaces for Energy Storage Applications. ACS Applied Materials & Storage Applications. ACS Applied Materials & Storage Applications.	8.0	20
25	Moxifloxacin Hydrochloride Electrochemical Detection at Gold Nanoparticles Modified Screen-Printed Electrode. Sensors, 2020, 20, 2797.	3.8	19
26	Promises of the "Nano-World―for electrochemical sensing and energy devices. Journal of Solid State Electrochemistry, 2020, 24, 2189-2191.	2.5	1
27	Permeability of Dawson–type polyoxometalates through vertically oriented nanoporous silica membranes on electrode: Effect of pore size and probe charge. Electrochimica Acta, 2020, 353, 136577.	5.2	3
28	Scanning Gel Electrochemical Microscopy (SGECM): Lateral Physical Resolution by Current and Shear Force Feedback. Analytical Chemistry, 2020, 92, 6415-6422.	6.5	11
29	Voltammetric behaviour of cationic redox probes at mesoporous silica film electrodes. Journal of Electroanalytical Chemistry, 2020, 872, 113993.	3.8	17
30	Selective Detection of Cysteine at a Mesoporous Silica Film Electrode Functionalized with Ferrocene in the Presence of Glutathione. ChemElectroChem, 2020, 7, 2095-2101.	3.4	17
31	Amino-grafting of montmorillonite improved by acid activation and application to the electroanalysis of catechol. Applied Clay Science, 2020, 191, 105602.	5.2	11
32	Cu Nanodendrite Foams on Integrated Band Array Electrodes for the Nonenzymatic Detection of Glucose. ACS Applied Nano Materials, 2019, 2, 5878-5889.	5.0	29
33	Sensitive Determination of Acetaminophen in the Presence of Dopamine and Pyridoxine Facilitated by their Extent of Interaction with Singleâ€walled Carbon Nanotubes. Electroanalysis, 2019, 31, 2472-2479.	2.9	8
34	Coordination Polymers as Template for Mesoporous Silica Films: A Novel Composite Material Fe(Htrz) ₃ @SiO ₂ with Remarkable Electrochemical Properties. Chemistry of Materials, 2019, 31, 5796-5807.	6.7	22
35	Mesoporous Silica-Based Materials for Electronics-Oriented Applications. Molecules, 2019, 24, 2395.	3.8	59
36	Thickness control in electrogenerated mesoporous silica films by wet etching and electrochemical monitoring of the process. Electrochemistry Communications, 2019, 100, 11-15.	4.7	4

#	Article	IF	Citations
37	Structure-reactivity requirements with respect to nickel-salen based polymers for enhanced electrochemical stability. Electrochimica Acta, 2019, 315, 75-83.	5.2	24
38	Evaluation of the electrocatalytic properties of Tungsten electrode towards hydrogen evolution reaction in acidic solutions. International Journal of Hydrogen Energy, 2019, 44, 16487-16496.	7.1	18
39	Layer-by-Layer modification of graphite felt with MWCNT for vanadium redox flow battery. Electrochimica Acta, 2019, 313, 131-140.	5.2	22
40	Synthesis, Crystal Structure, Electrochemistry and Electro-Catalytic Properties of the Manganese-Containing Polyoxotungstate, [(Mn(H2O)3)2(H2W12O42)]6â^. Inorganics, 2019, 7, 15.	2.7	12
41	Voltammetric and microscopic characteristics of MnO2 and silica-MnO2hybrid films electrodeposited on the surface of planar electrodes. Electrochimica Acta, 2019, 306, 680-687.	5.2	12
42	pH-modulated ion transport and amplified redox response of Keggin-type polyoxometalates through vertically-oriented mesoporous silica nanochannels. Electrochimica Acta, 2019, 309, 209-218.	5.2	17
43	Amino-attapulgite/mesoporous silica composite films generated by electro-assisted self-assembly for the voltammetric determination of diclofenac. Sensors and Actuators B: Chemical, 2019, 287, 296-305.	7.8	37
44	Multi-step functionalization procedure for fabrication of vertically aligned mesoporous silica thin films with metal-containing molecules localized at the pores bottom. Microporous and Mesoporous Materials, 2019, 274, 356-362.	4.4	17
45	Critical Effect of Film Thickness on Preconcentration Electroanalysis with Oriented Mesoporous Silica Modified Electrodes. Electroanalysis, 2019, 31, 202-207.	2.9	12
46	Porous and Transparent Metalâ€oxide Electrodes :  Preparation Methods and Electroanalytical Application Prospects. Electroanalysis, 2018, 30, 1241-1258.	2.9	15
47	Mesoporous Silica Thin Films for Improved Electrochemical Detection of Paraquat. ACS Sensors, 2018, 3, 484-493.	7.8	127
48	Molecular and Biological Catalysts Coimmobilization on Electrode by Combining Diazonium Electrografting and Sequential Click Chemistry. ChemElectroChem, 2018, 5, 2208-2217.	3.4	22
49	Silica-based electrochemical sensors and biosensors: Recent trends. Current Opinion in Electrochemistry, 2018, 10, 88-97.	4.8	99
50	MS2 and Qβ bacteriophages reveal the contribution of surface hydrophobicity on the mobility of nonâ€enveloped icosahedral viruses in SDSâ€based capillary zone electrophoresis. Electrophoresis, 2018, 39, 377-385.	2.4	9
51	Electrodeposition of silver amalgam particles on ITO – Towards novel electrode material. Journal of Electroanalytical Chemistry, 2018, 821, 53-59.	3.8	14
52	Design and properties of a novel radiopaque injectable apatitic calcium phosphate cement, suitable for imageâ€guided implantation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2786-2795.	3.4	11
53	Scanning gel electrochemical microscopy (SGECM): The potentiometric measurements. Electrochemistry Communications, 2018, 97, 64-67.	4.7	14
54	Electrocatalytic Biosynthesis using a Bucky Paper Functionalized by [Cp*Rh(bpy)Cl] ⁺ and a Renewable Enzymatic Layer. ChemCatChem, 2018, 10, 4067-4073.	3.7	29

#	Article	IF	Citations
55	Palladium-Prussian blue nanoparticles; as homogeneous and heterogeneous electrocatalysts. Journal of Electroanalytical Chemistry, 2018, 823, 747-754.	3.8	7
56	Scanning Gel Electrochemical Microscopy for Topography and Electrochemical Imaging. Analytical Chemistry, 2018, 90, 8889-8895.	6.5	14
57	Indirect amperometric detection of non-redox ions using a ferrocene-functionalized and oriented mesoporous silica thin film electrode. Electrochimica Acta, 2017, 228, 659-666.	5.2	10
58	Vertically Aligned and Ordered One-Dimensional Mesoscale Polyaniline. Langmuir, 2017, 33, 4224-4234.	3 . 5	21
59	3-Aminopropyltrimethoxysilane mediated solvent induced synthesis of gold nanoparticles for biomedical applications. Materials Science and Engineering C, 2017, 79, 45-54.	7.3	9
60	Kinetics of the electrochemically-assisted deposition of sol–gel films. Physical Chemistry Chemical Physics, 2017, 19, 14972-14983.	2.8	9
61	Covalent Immobilization of (2,2′-Bipyridyl) (Pentamethylcyclopentadienyl)-Rhodium Complex on a Porous Carbon Electrode for Efficient Electrocatalytic NADH Regeneration. ACS Catalysis, 2017, 7, 4386-4394.	11.2	65
62	Multi-layered, vertically-aligned and functionalized mesoporous silica films generated by sequential electrochemically assisted self-assembly. Electrochimica Acta, 2017, 237, 227-236.	5.2	25
63	Decorating soft electrified interfaces: From molecular assemblies to nano-objects. Applied Materials Today, 2017, 9, 533-550.	4.3	30
64	A straightforward approach to enhance the textural, mechanical and biological properties of injectable calcium phosphate apatitic cements (CPCs): CPC/blood composites, a comprehensive study. Acta Biomaterialia, 2017, 62, 328-339.	8.3	15
65	Physical Chemistry in France. ChemPhysChem, 2017, 18, 2558-2559.	2.1	0
66	Functional Electrodes for Enzymatic Electrosynthesis. , 2017, , 215-271.		1
67	Copper Nanowires through Oriented Mesoporous Silica: A Step towards Protected and Parallel Atomic Switches. Scientific Reports, 2017, 7, 17752.	3.3	7
68	Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. Sensors, 2017, 17, 1863.	3.8	60
69	Clickable Bifunctional and Vertically Aligned Mesoporous Silica Films. Advanced Materials Interfaces, 2016, 3, 1500440.	3.7	38
70	Molecular Sieving with Vertically Aligned Mesoporous Silica Films and Electronic Wiring through Isolating Nanochannels. Chemistry of Materials, 2016, 28, 2511-2514.	6.7	58
71	Electrografting of 3-Aminopropyltriethoxysilane on a Glassy Carbon Electrode for the Improved Adhesion of Vertically Oriented Mesoporous Silica Thin Films. Langmuir, 2016, 32, 4323-4332.	3.5	46
72	Macroporous carbon nanotube-carbon composite electrodes. Carbon, 2016, 109, 106-116.	10.3	18

#	Article	IF	CITATIONS
73	Amplified Charge Transfer for Anionic Redox Probes through Oriented Mesoporous Silica Thin Films. ChemElectroChem, 2016, 3, 2130-2137.	3.4	33
74	Surface modification and porosimetry of vertically aligned hexagonal mesoporous silica films. RSC Advances, 2016, 6, 113432-113441.	3.6	11
75	Enzymatic bioreactor for simultaneous electrosynthesis and energy production. Electrochimica Acta, 2016, 199, 342-348.	5.2	20
76	Visualization of Diffusion within Nanoarrays. Analytical Chemistry, 2016, 88, 6689-6695.	6.5	20
77	Immobilization of Cysteine-Tagged Proteins on Electrode Surfaces by Thiol–Ene Click Chemistry. ACS Applied Materials & Interfaces, 2016, 8, 17591-17598.	8.0	34
78	An inorganic-organic hybrid material from the co-intercalation of a cationic surfactant and thiourea within montmorillonite layers: application to the sensitive stripping voltammetric detection of Pb2+ and Cd2+ ions. Comptes Rendus Chimie, 2016, 19, 789-797.	0.5	11
79	Local pH changes triggered by photoelectrochemistry for silica condensation at the liquid-liquid interface. Electrochimica Acta, 2016, 188, 71-77.	5.2	10
80	Highly Organized Ferroceneâ€Functionalized Nanoporous Silica Films with an Extremely Fast Electronâ€Transfer Rate for an Intrinsically Nonconducting Oxideâ€Modified Electrode. ChemElectroChem, 2015, 2, 1695-1698.	3.4	17
81	Amperometric Biosensor for Choline Based on Gold Screenâ€Printed Electrode Modified with Electrochemicallyâ€Deposited Silica Biocomposite. Electroanalysis, 2015, 27, 1685-1692.	2.9	22
82	Mesoporous Materialsâ€Based Electrochemical Enzymatic Biosensors. Electroanalysis, 2015, 27, 2028-2054.	2.9	48
83	Organoclay-modified electrodes: preparation, characterization and recent electroanalytical applications. Journal of Solid State Electrochemistry, 2015, 19, 1949-1973.	2.5	29
84	Ordered mesoporous silica films with pores oriented perpendicular to a titanium nitride substrate. Physical Chemistry Chemical Physics, 2015, 17, 4763-4770.	2.8	39
85	Mesoporous silica thin films for molecular sieving and electrode surface protection against biofouling. Electrochemistry Communications, 2015, 52, 34-36.	4.7	49
86	Preparation of ordered and oriented mesoporous silica thin films bearing octyl or hexadecyl groups by electrochemically assisted self-assembly and evaluation of their transport properties. Journal of Solid State Electrochemistry, 2015, 19, 2075-2085.	2.5	10
87	Electrochemistry supported by zeolites, clays, layered double hydroxides, ordered mesoporous (organo)silicas, and related materials. Journal of Solid State Electrochemistry, 2015, 19, 1885-1886.	2.5	1
88	Tetrazine-functionalized and vertically-aligned mesoporous silica films with electrochemical activity and fluorescence properties. Electrochemistry Communications, 2015, 59, 9-12.	4.7	19
89	Immobilization of membrane-bounded (S)-mandelate dehydrogenase in sol–gel matrix for electroenzymatic synthesis. Bioelectrochemistry, 2015, 104, 65-70.	4.6	10
90	Electrochemical response of vertically-aligned, ferrocene-functionalized mesoporous silica films: effect of the supporting electrolyte. Electrochimica Acta, 2015, 179, 304-314.	5.2	46

#	Article	IF	CITATIONS
91	Electrochemical characterization of liquid-liquid micro-interfaces modified with mesoporous silica. Electrochimica Acta, 2015, 179, 9-15.	5.2	26
92	Mesoporous Materialsâ€Based Electrochemical Sensors. Electroanalysis, 2015, 27, 1303-1340.	2.9	111
93	Electrochemically assisted deposition by local pH tuning: a versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials. Journal of Solid State Electrochemistry, 2015, 19, 1905-1931.	2.5	31
94	Electrode Materials (Bulk Materials and Modification). Nanostructure Science and Technology, 2014, , 403-495.	0.1	6
95	Glassy carbon electrode modified with a film of poly(Toluidine Blue O) and carbon nanotubes for nitrite detection. Journal of Solid State Electrochemistry, 2014, 18, 1519-1528.	2.5	28
96	Tetrabutylammonium-modified clay film electrodes: Characterization and application to the detection of metal ions. Talanta, 2014, 125, 36-44.	5 . 5	21
97	Sol–gel based â€~artificial' biofilm from Pseudomonas fluorescens using bovine heart cytochrome c as electron mediator. Electrochemistry Communications, 2014, 38, 71-74.	4.7	19
98	Verticallyâ€aligned Mesoporous Silica Films. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 537-546.	1.2	46
99	High-frequency impedance measurement as a relevant tool for monitoring the apatitic cement setting reaction. Acta Biomaterialia, 2014, 10, 940-950.	8.3	15
100	Interfacial processes studied by coupling electrochemistry at the polarised liquid–liquid interface with in situ confocal Raman spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 26955-26962.	2.8	21
101	One-step co-intercalation of cetyltrimethylammonium and thiourea in smectite and application of the organoclay to the sensitive electrochemical detection of Pb(II). Applied Clay Science, 2014, 99, 297-305.	5.2	28
102	Electrochemically Assisted Generation of Silica Deposits Using a Surfactant Template at Liquid/Liquid Microinterfaces. Langmuir, 2014, 30, 11453-11463.	3.5	37
103	Electro-Assisted Self-Assembly of Cetyltrimethylammonium-Templated Silica Films in Aqueous Media: Critical Effect of Counteranions on the Morphology and Mesostructure Type. Chemistry of Materials, 2014, 26, 1848-1858.	6.7	26
104	An l-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of d-sorbose with enzymatic or electrochemical cofactor regeneration. Applied Microbiology and Biotechnology, 2014, 98, 3023-3032.	3.6	9
105	Electrochemically Assisted Generation of Highly Ordered Azideâ€Functionalized Mesoporous Silica for Oriented Hybrid Films. Angewandte Chemie - International Edition, 2014, 53, 2945-2950.	13.8	79
106	Reagentless d-sorbitol biosensor based on d-sorbitol dehydrogenase immobilized in a sol–gel carbon nanotubes–poly(methylene green) composite. Analytical and Bioanalytical Chemistry, 2013, 405, 3899-3906.	3.7	20
107	Electrochemically assisted self-assembly of ordered and functionalized mesoporous silica films: impact of the electrode geometry and size on film formation and properties. Faraday Discussions, 2013, 164, 259.	3.2	52
108	Nanomaterials for bio-functionalized electrodes: recent trends. Journal of Materials Chemistry B, 2013, 1, 4878.	5.8	302

#	Article	IF	Citations
109	Electrochemically assisted bacteria encapsulation in thin hybrid sol–gel films. Journal of Materials Chemistry B, 2013, 1, 1052.	5.8	26
110	Interest of the Solâ€Gel Approach for Multiscale Tailoring of Porous Bioelectrode Surfaces. Electroanalysis, 2013, 25, 621-629.	2.9	16
111	Clay-mesoporous silica composite films generated by electro-assisted self-assembly. Electrochimica Acta, 2013, 112, 333-341.	5.2	22
112	Characterization of MCM-41 with Immobilized Bi-functional SH/SO3H Layer. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 1409-1416.	3.7	1
113	Platinum Ultramicroelectrodes Modified with Electrogenerated Surfactant‶emplated Mesoporous Organosilica Films: Effect of Film Formation Conditions on Its Performance in Preconcentration Electroanalysis. Electroanalysis, 2013, 25, 2595-2603.	2.9	23
114	Functionalized carbon nanotubes for bioelectrochemical applications: Critical influence of the linker. Journal of Electroanalytical Chemistry, 2013, 707, 129-133.	3.8	9
115	Bimodal mesoporous titanium dioxide anatase films templated by a block polymer and an ionic liquid: influence of the porosity on the permeability. Nanoscale, 2013, 5, 12316.	5.6	24
116	Electrophoretic deposition of macroporous carbon nanotube assemblies for electrochemical applications. Carbon, 2013, 53, 302-312.	10.3	14
117	One Step Deposition of Solâ€Gel Carbon Nanotubes Biocomposite for Reagentless Electrochemical Devices. Electroanalysis, 2013, 25, 85-93.	2.9	17
118	In-situ formation of mesoporous silica films controlled by ion transfer voltammetry at the polarized liquid–liquid interface. Electrochemistry Communications, 2013, 37, 76-79.	4.7	29
119	Mesoporous materials and electrochemistry. Chemical Society Reviews, 2013, 42, 4098.	38.1	541
120	Chromium(VI) removal via reduction–sorption on bi-functional silica adsorbents. Journal of Hazardous Materials, 2013, 250-251, 454-461.	12.4	67
121	Electrochemical approaches for the fabrication and/or characterization of pure and hybrid templated mesoporous oxide thin films: a review. Analytical and Bioanalytical Chemistry, 2013, 405, 1497-1512.	3.7	71
122	Metal ion removal by ultrafiltration of colloidal suspensions of organically modified silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 417, 65-72.	4.7	13
123	Sol-gel Approaches for Elaboration of Polyol Dehydrogenase-Based Bioelectrodes. Zeitschrift Fur Physikalische Chemie, 2013, 227, 667-689.	2.8	6
124	Electrocatalytic effect towards NADH induced by HiPco single-walled carbon nanotubes covalently functionalized by ferrocene derivatives. Materials Research Society Symposia Proceedings, 2013, 1531, 1.	0.1	1
125	New approaches for the local prevention of osteoporotic fractures. Materials Research Society Symposia Proceedings, 2012, 1376, 26.	0.1	1
126	Few-wall carbon nanotubes covalently functionalized by ferrocene groups for bioelectrochemical devices Materials Research Society Symposia Proceedings, 2012, 1451, 111-116.	0.1	0

#	Article	IF	Citations
127	Covalent functionalization of fewâ€wall carbon nanotubes by ferrocene derivatives for bioelectrochemical devices. Physica Status Solidi (B): Basic Research, 2012, 249, 2349-2352.	1.5	12
128	Site Selective Generation of Sol–Gel Deposits in Layered Bimetallic Macroporous Electrode Architectures. Langmuir, 2012, 28, 2323-2326.	3.5	11
129	Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. TrAC - Trends in Analytical Chemistry, 2012, 38, 79-97.	11.4	132
130	Electrophoretically deposited carbon nanotubes as a novel support for electrogenerated silica–dehydrogenase bioelectrodes. Electrochimica Acta, 2012, 83, 359-366.	5.2	20
131	A Novel Highly Sensitive Zeolite-Based Conductometric Microsensor for Ammonium Determination. Analytical Letters, 2012, 45, 1467-1484.	1.8	17
132	One pot synthesis of ordered mesoporous organosilica particles bearing propyl-, octyl- and hexadecyl-chains. Journal of Sol-Gel Science and Technology, 2012, 63, 587-594.	2.4	5
133	Durable cofactor immobilization in sol–gel bio-composite thin films for reagentless biosensors and bioreactors using dehydrogenases. Biosensors and Bioelectronics, 2012, 32, 111-117.	10.1	47
134	Dehydrogenaseâ€Based Reagentless Biosensors: Electrochemically Assisted Deposition of Solâ€Gel Thin Films on Functionalized Carbon Nanotubes. Electroanalysis, 2012, 24, 376-385.	2.9	27
135	Microscale Controlled Electrogeneration of Patterned Mesoporous Silica Thin Films. Chemistry of Materials, 2011, 23, 5313-5322.	6.7	35
136	Controlled Electrochemically-Assisted Deposition of Solâ^'Gel Biocomposite on Electrospun Platinum Nanofibers. Langmuir, 2011, 27, 7140-7147.	3.5	19
137	Multiscale-Tailored Bioelectrode Surfaces for Optimized Catalytic Conversion Efficiency. Langmuir, 2011, 27, 12737-12744.	3.5	14
138	Electrochemical response of ascorbic and uric acids at organoclay film modified glassy carbon electrodes and sensing applications. Talanta, 2011, 85, 754-762.	5.5	40
139	Conductometric enzyme biosensors based on natural zeolite clinoptilolite for urea determination. Materials Science and Engineering C, 2011, 31, 1490-1497.	7.3	56
140	Electrochemically assisted deposition of sol–gel bio-composite with co-immobilized dehydrogenase and diaphorase. Electrochimica Acta, 2011, 56, 9032-9040.	5.2	34
141	Factors affecting the electrochemical regeneration of NADH by (2,2′-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes: Impact on their immobilization onto electrode surfaces. Bioelectrochemistry, 2011, 82, 46-54.	4.6	50
142	Square Wave Voltammetric Determination of Lead(II) Ions Using a Carbon Paste Electrode Modified by a Thiolâ€Functionalized Kaolinite. Electroanalysis, 2011, 23, 245-252.	2.9	63
143	Kinetics of the complexation of Ni2+ ions by 5-phenyl-azo-8-hydroxyquinoline grafted on colloidal silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380, 261-269.	4.7	14
144	Investigation of alendronate-doped apatitic cements as a potential technology for the prevention of osteoporotic hip fractures: Critical influence of the drug introduction mode on the in vitro cement properties. Acta Biomaterialia, 2011, 7, 759-770.	8.3	46

9

#	Article	IF	CITATIONS
145	Electrogeneration of ultra-thin silica films for the functionalization of macroporous electrodes. Electrochemistry Communications, 2011, 13, 138-142.	4.7	36
146	Electrochemical Screening of Redox Mediators for Electrochemical Regeneration of NADH. Journal of the Electrochemical Society, 2011, 159, F10-F16.	2.9	15
147	Template-directed porous electrodes in electroanalysis. Analytical and Bioanalytical Chemistry, 2010, 396, 261-272.	3.7	103
148	Surfactant-templated sol–gel silica thin films bearing 5-mercapto-1-methyl-tetrazole on carbon electrode for Hg(II) detection. Electrochimica Acta, 2010, 55, 4201-4207.	5.2	29
149	Critical Effect of Polyelectrolytes on the Electrochemical Response of Dehydrogenases Entrapped in Solâ€Gel Thin Films. Electroanalysis, 2010, 22, 2092-2100.	2.9	14
150	Iron-enriched natural zeolite modified carbon paste electrode for H2O2 detection. Electrochimica Acta, 2010, 55, 4050-4056.	5.2	30
151	Electrogeneration of highly methylated mesoporous silica thin films with vertically-aligned mesochannels and electrochemical monitoring of mass transport issues. Journal of Materials Chemistry, 2010, 20, 6799.	6.7	62
152	Electrochemical Generation of Thin Silica Films with Hierarchical Porosity. Chemistry of Materials, 2010, 22, 3426-3432.	6.7	48
153	Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode. Talanta, 2010, 81, 972-979.	5.5	86
154	Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. Journal of Materials Chemistry, 2010, 20, 4478.	6.7	519
155	Oriented Mesoporous Organosilica Films on Electrode: A New Class of Nanomaterials for Sensing. Journal of Nanoscience and Nanotechnology, 2009, 9, 2398-2406.	0.9	81
156	Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50â€Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis, 2009, 21, 7-28.	2.9	584
157	Cyclamâ€Functionalized Silicaâ€Modified Electrodes for Selective Determination of Cu(II). Electroanalysis, 2009, 21, 280-289.	2.9	28
158	Voltammetric Detection of Lead(II) Using Amideâ€Cyclam―Functionalized Silicaâ€Modified Carbon Paste Electrodes. Electroanalysis, 2009, 21, 1731-1742.	2.9	33
159	Electrochemical sensors and biosensors based on heterogeneous carbon materials. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2009, 140, 861-889.	1.8	64
160	Electroanalytical properties of haemoglobin in silica-nanocomposite films electrogenerated on pyrolitic graphite electrode. Journal of Electroanalytical Chemistry, 2009, 625, 33-39.	3.8	24
161	Prussian Blue electrodeposition within an oriented mesoporous silica film: preliminary observations. Journal of Materials Science, 2009, 44, 6601-6607.	3.7	50
162	One-step preparation of thiol-modified mesoporous silica spheres with various functionalization levels and different pore structures. Journal of Sol-Gel Science and Technology, 2009, 49, 112-124.	2.4	40

#	Article	IF	Citations
163	Factors Affecting Copper(II) Binding to Multiarmed Cyclam-Grafted Mesoporous Silica in Aqueous Solution. Langmuir, 2009, 25, 9804-9813.	3.5	36
164	Analytical Chemistry with Silica Sol-Gels: Traditional Routes to New Materials for Chemical Analysis. Annual Review of Analytical Chemistry, 2009, 2, 121-143.	5.4	168
165	Carbon paste electrodes in the new millennium. Open Chemistry, 2009, 7, 598-656.	1.9	109
166	One-Step Preparation of Thiol-Functionalized Porous Clay Heterostructures: Application to Hg(II) Binding and Characterization of Mass Transport Issues. Chemistry of Materials, 2009, 21, 4111-4121.	6.7	82
167	Factors affecting the reactivity of thiol-functionalized mesoporous silica adsorbents toward mercury(II). Talanta, 2009, 79, 877-886.	5.5	72
168	Electrochemistry with Micro- and Mesoporous Silicates., 2009,, 523-557.		2
169	Multiarm Cyclam-Grafted Mesoporous Silica: A Strategy to Improve the Chemical Stability of Silica Materials Functionalized with Amine Ligands. Langmuir, 2009, 25, 3137-3145.	3.5	38
170	Synthesis of dithiocarbamate-functionalized mesoporous silica-based materials: interest of one-step grafting. New Journal of Chemistry, 2009, 33, 528-537.	2.8	15
171	Oriented Mesoporous Silica Films Obtained by Electro-Assisted Self-Assembly (EASA). Chemistry of Materials, 2009, 21, 731-741.	6.7	168
172	1,8-Bis[3-(triethoxysilyl)propyl]-1,8-diazoniatricyclo[9.3.1.14,8]hexadecane diiodide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2531-o2531.	0.2	0
173	Orthopositronium annihilation and emission in mesostructured thin silica and silicalite-1 films. Applied Surface Science, 2008, 255, 187-190.	6.1	14
174	Electroanalytical Applications of Microporous Zeolites and Mesoporous (Organo)Silicas: Recent Trends. Electroanalysis, 2008, 20, 711-738.	2.9	145
175	Naphthidine di(radical cation)s-stabilized palladium nanoparticles for efficient catalytic Suzuki–Miyaura cross-coupling reactions. Tetrahedron, 2008, 64, 372-381.	1.9	63
176	Ordered porous thin films in electrochemical analysis. TrAC - Trends in Analytical Chemistry, 2008, 27, 593-603.	11.4	162
177	lon exchange and ion exchange voltammetry with functionalized mesoporous silica materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 123-132.	3.5	31
178	Simultaneous Determination of Nickel and Cobalt as Chelates with 1-(2-Pyridylazo)-2-naphthol Using an LC Switching Column Method. Chromatographia, 2008, 67, 857-861.	1.3	1
179	Sorption of methylene blue on an organoclay bearing thiol groups and application to electrochemical sensing of the dye. Talanta, 2008, 74, 489-497.	5.5	70
180	Bifunctionalized Mesoporous Silicas for Cr(VI) Reduction and Concomitant Cr(III) Immobilization. Environmental Science & Envir	10.0	123

#	Article	lF	CITATIONS
181	Theory and Simulation of Diffusionâ^'Reaction into Nano- and Mesoporous Structures. Experimental Application to Sequestration of Mercury(II). Analytical Chemistry, 2008, 80, 3229-3243.	6.5	16
182	A Scheme To Produce The Antihydrogen Ion Hì, $[\sup +]$ For Gravity Measurements. AIP Conference Proceedings, 2008, , .	0.4	7
183	Positronium reemission yield from mesostructured silica films. Applied Physics Letters, 2008, 92, .	3.3	70
184	Study of mercury(II) binding to thiol-modified ordered mesoporous silicas by analytical and electrochemical analyses: influence of the pore structure and the functionalization process. Studies in Surface Science and Catalysis, 2007, 165, 417-420.	1.5	4
185	Theoretical investigation of the EPR hyperfine coupling constants in amino derivatives. Physical Chemistry Chemical Physics, 2007, 9, 828.	2.8	17
186	Molecular Transport into Mesostructured Silica Thin Films:Â Electrochemical Monitoring and Comparison betweenp6m, P63/mmc, andPm3nStructures. Chemistry of Materials, 2007, 19, 844-856.	6.7	177
187	Preconcentration Electroanalysis at Surfactant-Templated Thiol-Functionalized Silica Thin Films. Electroanalysis, 2007, 19, 129-138.	2.9	41
188	Synthesis of new dithiocarbamate-based organosilanes for grafting on silica. Tetrahedron Letters, 2007, 48, 2113-2116.	1.4	30
189	Quaternary ammonium functionalized clay film electrodes modified with polyphenol oxidase for the sensitive detection of catechol. Biosensors and Bioelectronics, 2007, 23, 269-275.	10.1	33
190	Direct electrochemistry of hemoglobin and glucose oxidase in electrodeposited sol–gel silica thin films on glassy carbon. Electrochemistry Communications, 2007, 9, 1189-1195.	4.7	131
191	Thiol-functionalized porous clay heterostructures (PCHs) deposited as thin films on carbon electrode: Towards mercury(II) sensing. Sensors and Actuators B: Chemical, 2007, 121, 113-123.	7.8	40
192	Electrochemically assisted self-assembly of mesoporous silica thin films. Nature Materials, 2007, 6, 602-608.	27.5	487
193	An aqueous route to organically functionalized silica diatom skeletons. Applied Surface Science, 2007, 253, 5485-5493.	6.1	36
194	Ion-Exchange Properties and Electrochemical Characterization of Quaternary Ammonium-Functionalized Silica Microspheres Obtained by the Surfactant Template Route. Langmuir, 2006, 22, 469-477.	3.5	46
195	Factors Affecting the Preparation and Properties of Electrodeposited Silica Thin Films Functionalized with Amine or Thiol Groups. Langmuir, 2006, 22, 8366-8373.	3.5	82
196	Facile Synthesis and Characterization of Naphthidines as a New Class of Highly Nonplanar Electron Donors Giving Robust Radical Cations. Journal of Organic Chemistry, 2006, 71, 1351-1361.	3.2	25
197	Sulfidation of Lead-Loaded Zeolite Microparticles and Flotation by Amylxanthate. Langmuir, 2006, 22, 1671-1679.	3.5	13
198	Analytical Investigation of the Interactions between SC3 Hydrophobin and Lipid Layers:Â Elaborating of Nanostructured Matrixes for Immobilizing Redox Systems. Analytical Chemistry, 2006, 78, 4850-4864.	6.5	29

#	Article	IF	Citations
199	Organoclay-enzyme film electrodes. Analytica Chimica Acta, 2006, 578, 145-155.	5.4	46
200	Voltammetric response of ferrocene-grafted mesoporous silica. Electrochimica Acta, 2006, 51, 6373-6383.	5.2	29
201	Zeolite-modified paraffin-impregnated graphite electrode. Journal of Solid State Electrochemistry, 2006, 10, 469-478.	2.5	29
202	Permselective and Preconcentration Properties of a Surfactant-Intercalated Clay Modified Electrode. Electroanalysis, 2006, 18, 2243-2250.	2.9	32
203	Novel Single-Phase and Gram-Scale Synthesis of Thiol-Uncapped Stable Colloidal Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2005, 5, 282-287.	0.9	6
204	Preconcentration and voltammetric analysis of mercury(II) at a carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sensors and Actuators B: Chemical, 2005, 110, 195-203.	7.8	96
205	Electrochemical modulation of the ligand properties of organically modified mesoporous silicas. Journal of Electroanalytical Chemistry, 2005, 581, 70-78.	3.8	23
206	Evaporation induced self-assembly of templated silica and organosilica thin films on various electrode surfaces. Electrochemistry Communications, 2005, 7, 1449-1456.	4.7	63
207	New tetrakis (4-aminophenyl) ethenes: synthesis and electrochemical investigations. Tetrahedron Letters, 2005, 46, 8793-8797.	1.4	6
208	Bienzyme HRP–GOx-modified gold nanoelectrodes for the sensitive amperometric detection of glucose at low overpotentials. Biosensors and Bioelectronics, 2005, 20, 1587-1594.	10.1	79
209	Mercury(II) binding to thiol-functionalized mesoporous silicas: critical effect of pH and sorbent properties on capacity and selectivity. Analytica Chimica Acta, 2005, 547, 3-13.	5.4	148
210	Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials. Comptes Rendus Chimie, 2005, 8, 693-712.	0.5	88
211	Electrochemically-Induced Deposition of Amine-Functionalized Silica Films on Gold Electrodes and Application to Cu(II) Detection in (Hydro)Alcoholic Medium. Electroanalysis, 2005, 17, 1716-1726.	2.9	60
212	Electrochemical evidences of morphological transformation in ordered mesoporous titanium oxide thin films. Chemical Communications, 2005, , 4566.	4.1	32
213	Synthesis and characterization of mesoporous silicas functionalized by thiol groups, and application as sorbents for mercury (II). Studies in Surface Science and Catalysis, 2005, 156, 925-932.	1.5	21
214	Preparing Catalytic Surfaces for Sensing Applications by Immobilizing Enzymes via Hydrophobin Layers. Analytical Chemistry, 2005, 77, 1622-1630.	6.5	67
215	Exciting new directions in the intersection of functionalized solâ \in gel materials with electrochemistry. Journal of Materials Chemistry, 2005, 15, 3663.	6.7	267
216	Electrochemistry of Sol-Gel Derived Hybrid Materials. , 2005, , 172-209.		5

#	Article	IF	Citations
217	Low Temperature Synthesis of Zeolite Films on Glassy Carbon: Towards Designing Molecularly Selective Electrochemical Devices. Electroanalysis, 2004, 16, 1550-1554.	2.9	27
218	Flow Injection Amperometric Detection at Enzyme-Modified Gold Nanoelectrodes. Electroanalysis, 2004, 16, 190-198.	2.9	48
219	Use of a Commercially Available Wood-Free Resin Pencil as Convenient Electrode for the ?Voltammetry of Microparticles? Technique. Electroanalysis, 2004, 16, 2042-2050.	2.9	19
220	Electrochemical probing of mass transfer rates in mesoporous silica-based organic–inorganic hybrids. Electrochimica Acta, 2004, 49, 3775-3783.	5.2	43
221	From clay- to organoclay-film modified electrodes: tuning charge selectivity in ion exchange voltammetry. Electrochimica Acta, 2004, 49, 3435-3443.	5. 2	85
222	Uptake of inorganic HgII by organically modified silicates: influence of pH and chloride concentration on the binding pathways and electrochemical monitoring of the processes. Analytica Chimica Acta, 2004, 508, 87-98.	5.4	65
223	Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles. Analytica Chimica Acta, 2004, 525, 221-230.	5.4	95
224	Dipeptide-functionalized mesoporous silica spheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 234, 145-151.	4.7	32
225	Surfactant Templated Sulfonic Acid Functionalized Silica Microspheres as New Efficient Ion Exchangers and Electrode Modifiers. Langmuir, 2004, 20, 3632-3640.	3.5	113
226	Zeolite-modified solid carbon paste electrodes. Journal of Solid State Electrochemistry, 2003, 7, 671-677.	2.5	31
227	Grafted Silicas in Electroanalysis: Amorphous Versus Ordered Mesoporous Materials. Electroanalysis, 2003, 15, 414-421.	2.9	88
228	Electrochemical Detection of Copper(II) at an Electrode Modified by a Carnosine-Silica Hybrid Material. Electroanalysis, 2003, 15, 422-430.	2.9	43
229	Electro-assisted generation of functionalized silica films on gold. Electrochemistry Communications, 2003, 5, 341-348.	4.7	78
230	Functionalization of natural smectite-type clays by grafting with organosilanes: physico-chemical characterization and application to mercury(ii) uptake. Physical Chemistry Chemical Physics, 2003, 5, 4951.	2.8	109
231	Rate of Access to the Binding Sites in Organically Modified Silicates. 2. Ordered Mesoporous Silicas Grafted with Amine or Thiol Groups. Chemistry of Materials, 2003, 15, 2161-2173.	6.7	274
232	Rate of Access to the Binding Sites in Organically Modified Silicates. 3. Effect of Structure and Density of Functional Groups in Mesoporous Solids Obtained by the Co-Condensation Route. Chemistry of Materials, 2003, 15, 4181-4192.	6.7	203
233	Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium. Talanta, 2003, 59, 1173-1188.	5.5	264
234	Rate of Access to the Binding Sites in Organically Modified Silicates. 1. Amorphous Silica Gels Grafted with Amine or Thiol Groups. Chemistry of Materials, 2002, 14, 2757-2766.	6.7	151

#	Article	IF	CITATIONS
235	1,3,5-Tris(4-aminophenyl)benzene derivatives: design, synthesis via nickel-catalysed aromatic amination and electrochemical properties. Perkin Transactions II RSC, 2002, , 1844-1849.	1.1	5
236	Organically-modified mesoporous silica spheres with MCM-41 architecture as sorbents for heavy metals. Studies in Surface Science and Catalysis, 2002, 141, 615-622.	1.5	20
237	Organically-modified mesoporous silica spheres with MCM-41 architecture. New Journal of Chemistry, 2002, 26, 384-386.	2.8	69
238	Tuning the Sensitivity of Electrodes Modified with an Organic-Inorganic Hybrid by Tailoring the Structure of the Nanocomposite Material. Electroanalysis, 2002, 14, 1521-1525.	2.9	51
239	Development of an ammonium ISFET sensor with a polymeric membrane including zeolite. Materials Science and Engineering C, 2002, 21, 25-28.	7.3	24
240	Development of a urea biosensor based on a polymeric membrane including zeolite. Analytica Chimica Acta, 2002, 466, 39-45.	5.4	60
241	Electrochemical Applications of Silica-Based Organicâ^Inorganic Hybrid Materials. Chemistry of Materials, 2001, 13, 3351-3372.	6.7	355
242	Recovery of Lead-Loaded Zeolite Particles by Flotation. Langmuir, 2001, 17, 2258-2264.	3.5	14
243	Voltammetric detection of copper(II) at a carbon paste electrode containing an organically modified silica. Sensors and Actuators B: Chemical, 2001, 76, 531-538.	7.8	124
244	Voltammetric Detection of Iodide after Accumulationby Friedel's Salt. Electroanalysis, 2001, 13, 313-320.	2.9	41
245	Electroanalysis with Pure, Chemically Modified and Sol-Gel-Derived Silica-Based Materials. Electroanalysis, 2001, 13, 701-718.	2.9	208
246	Application of electrodes modified with ion-exchange polymers for the amperometric detection of non-redox cations and anions in combination to ion chromatography. Electrochimica Acta, 2001, 46, 3543-3553.	5.2	15
247	Silica-modified electrode for the selective detection of mercury. Journal of Solid State Electrochemistry, 2000, 4, 330-336.	2.5	36
248	Use of a zeolite-modified electrode for the study of the methylviologen–sodium ion-exchange in zeolite Y. Journal of Electroanalytical Chemistry, 1999, 463, 100-108.	3.8	25
249	Flow injection indirect amperometric detection of ammonium ions using a clinoptilolite-modified electrode. Sensors and Actuators B: Chemical, 1999, 56, 136-143.	7.8	29
250	Cuprite-modified electrode for the detection of iodide species. Sensors and Actuators B: Chemical, 1999, 59, 113-117.	7.8	34
251	Electrochemical evaluation of polysiloxane-immobilized amine ligands for the accumulation of copper(II) species. Electrochimica Acta, 1999, 44, 4601-4610.	5.2	79
252	Selective monitoring of Cu(II) species using a silica modified carbon paste electrode. Analytica Chimica Acta, 1999, 385, 79-89.	5 . 4	52

#	Article	lF	Citations
253	Zeolite-modified electrodes in electroanalytical chemistry. Analytica Chimica Acta, 1999, 384, 1-16.	5.4	220
254	Factors affecting the analytical applications of zeolite modified electrodes: indirect detection of nonelectroactive cations. Analytica Chimica Acta, 1999, 388, 79-91.	5.4	49
255	Amperometric Detection of Nonelectroactive Cations in Electrolyte-Free Flow Systems at Zeolite Modified Electrodes. Electroanalysis, 1999, 11, 393-400.	2.9	25
256	Screen-printed zeolite-modified carbon electrodes. Analyst, The, 1999, 124, 1185-1190.	3.5	64
257	Influence of the Base Size and Strength on the Acidic Properties of Silica Gel and Monodispersed Silica Beads:Â Interest of Impedance Measurements for the in Situ Monitoring of the Ionization Process. Langmuir, 1999, 15, 3186-3196.	3 . 5	21
258	Electrochemistry with Mesoporous Silica:  Selective Mercury(II) Binding. Chemistry of Materials, 1999, 11, 3009-3011.	6.7	39
259	Electrochemical Recognition of Selective Mercury Adsorption on Minerals. Environmental Science & Envir	10.0	32
260	In situ monitoring of copper(II) fixation on silica gel in aqueous ammonia by means of dielectric measurements and quantitative analysis of adsorbed species. Analytica Chimica Acta, 1998, 361, 273-283.	5.4	16
261	Voltammetric in situ investigation of an MCM-41-modified carbon paste electrode—a new sensor. Journal of Electroanalytical Chemistry, 1998, 453, 249-252.	3.8	49
262	The Methylviologen-Doped Zeolite Modified Electrode as a New Detector for Suppressor Free Ion Chromatography. Analytical Letters, 1998, 31, 585-599.	1.8	11
263	Analytical Applications of Silica-Modified Electrodes -A Comprehensive Review. Electroanalysis, 1998, 10, 1217-1235.	2.9	130
264	Analytical Applications of Silica-Modified Electrodes –A Comprehensive Review. Electroanalysis, 1998, 10, 1217-1235.	2.9	116
265	In situ investigation of the ionisation of silica in aqueous ammonia by using a high frequency dielectric method. Talanta, 1997, 45, 357-369.	5.5	16
266	Voltammetric response of the hexammino-ruthenium complex incorporated in zeolite-modified carbon paste electrode. Journal of Electroanalytical Chemistry, 1997, 422, 77-89.	3.8	22
267	Factors affecting the analytical applications of zeolite-modified electrodes preconcentration of electroactive species. Analytica Chimica Acta, 1997, 340, 61-76.	5.4	71
268	Zeolite-modified electrodes: Analytical applications and prospects. Electroanalysis, 1996, 8, 971-986.	2.9	139
269	Zeolite containing oxidase-based carbon paste biosensors. Journal of Electroanalytical Chemistry, 1996, 404, 237-242.	3.8	61
270	Square wave voltammetric determination of paraquat and diquat in aqueous solution. Journal of Electroanalytical Chemistry, 1996, 406, 59-68.	3.8	73

#	Article	lF	CITATIONS
271	Zeolite-modified carbon paste electrode for selective monitoring of dopamine. Journal of Electroanalytical Chemistry, 1996, 407, 183-187.	3.8	152
272	Cation determination in aqueous solution using the methyl viologen-doped zeolite-modified carbon paste electrode. Electroanalysis, 1995, 7, 120-128.	2.9	44
273	The methyl viologen incorporated zeolite modified carbon paste electrodeâ€"part 1. Electrochemical behaviour in aqueous media. Effects of supporting electrolyte and immersion time. Electrochimica Acta, 1993, 38, 2257-2266.	5.2	80
274	The methyl viologen incorporated zeolite modified carbon paste electrodeâ€"part 2. Ion exchange and electron transfer mechanism in aqueous medium. Electrochimica Acta, 1993, 38, 2267-2276.	5.2	48
275	Electrochemistry within template nanosystems. SPR Electrochemistry, 0, , 124-197.	0.7	2
276	Improved productivity of NAD+ reduction under forced convection in aerated solutions. ChemElectroChem, 0, , .	3.4	1
277	Electroanalysis based on carbon nanomaterials. Electroanalysis, 0, , .	2.9	1
278	Get closer to the intrinsic properties of Ni ²⁺ salen polymer semiconductors accessed by chain isolation inside silica nanochannels. Journal of Materials Chemistry C, 0, , .	5.5	2