
David W Ussery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8920020/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 2007, 35, 3100-3108.	14.5	5,357
2	Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. Journal of Clinical Microbiology, 2012, 50, 1355-1361.	3.9	1,925
3	The minimum information about a genome sequence (MIGS) specification. Nature Biotechnology, 2008, 26, 541-547.	17.5	1,069
4	Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 2007, 25, 221-231.	17.5	1,047
5	Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 2014, 32, 822-828.	17.5	909
6	Insights from 20Âyears of bacterial genome sequencing. Functional and Integrative Genomics, 2015, 15, 141-161.	3.5	580
7	Comparison of 61 Sequenced Escherichia coli Genomes. Microbial Ecology, 2010, 60, 708-720.	2.8	436
8	The transcriptional landscape and small RNAs of <i>Salmonella enterica</i> serovar Typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1277-86.	7.1	373
9	Benchmarking of Methods for Genomic Taxonomy. Journal of Clinical Microbiology, 2014, 52, 1529-1539.	3.9	241
10	A DNA structural atlas for Escherichia coli 1 1Edited by T. Richmond. Journal of Molecular Biology, 2000, 299, 907-930.	4.2	213
11	Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics, 2012, 13, 577.	2.8	205
12	The Complete Genome Sequence and Analysis of the Epsilonproteobacterium Arcobacter butzleri. PLoS ONE, 2007, 2, e1358.	2.5	203
13	On the total number of genes and their length distribution in complete microbial genomes. Trends in Genetics, 2001, 17, 425-428.	6.7	193
14	Machine Learning Methods in Drug Discovery. Molecules, 2020, 25, 5277.	3.8	182
15	The Genomic Standards Consortium. PLoS Biology, 2011, 9, e1001088.	5.6	180
16	The Salmonella enterica Pan-genome. Microbial Ecology, 2011, 62, 487-504.	2.8	175
17	Genomic taxonomy of vibrios. BMC Evolutionary Biology, 2009, 9, 258.	3.2	168
18	Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Functional and Integrative Genomics, 2006, 6, 165-185.	3.5	156

#	Article	IF	CITATIONS
19	Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Research, 2021, 49, e7-e7.	14.5	149
20	Microbial taxonomy in the post-genomic era: Rebuilding from scratch?. Archives of Microbiology, 2015, 197, 359-370.	2.2	144
21	Review and phylogenetic analysis of <i>qac</i> genes that reduce susceptibility to quaternary ammonium compounds in <i>Staphylococcus</i> species. European Journal of Microbiology and Immunology, 2015, 5, 44-61.	2.8	139
22	A Closer Look at Bacteroides: Phylogenetic Relationship and Genomic Implications of a Life in the Human Gut. Microbial Ecology, 2011, 61, 473-485.	2.8	135
23	The chromatin-associated protein H-NS. Biochimie, 1994, 76, 968-980.	2.6	122
24	CMC-Biotools, a Free Workbench for Basic Comparative Microbial Genomics. PLoS ONE, 2013, 8, e60120.	2.5	119
25	Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Research, 2018, 46, e38-e38.	14.5	116
26	Origin of replication in circular prokaryotic chromosomes. Environmental Microbiology, 2006, 8, 353-361.	3.8	115
27	The genomic code: inferring Vibrionaceae niche specialization. Nature Reviews Microbiology, 2006, 4, 697-704.	28.6	115
28	Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiology, 2008, 8, 110.	3.3	114
29	Comparative Genomics of Bifidobacterium, Lactobacillus and Related Probiotic Genera. Microbial Ecology, 2012, 63, 651-673.	2.8	113
30	Genome Sequencing Identifies Two Nearly Unchanged Strains of Persistent Listeria monocytogenes Isolated at Two Different Fish Processing Plants Sampled 6 Years Apart. Applied and Environmental Microbiology, 2013, 79, 2944-2951.	3.1	110
31	Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogen Helicobacter pylori. Molecular Microbiology, 2003, 51, 15-32.	2.5	106
32	From essential to persistent genes: a functional approach to constructing synthetic life. Trends in Genetics, 2013, 29, 273-279.	6.7	106
33	Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104. Applied and Environmental Microbiology, 2016, 82, 2516-2526.	3.1	105
34	The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics, 2008, 9, 271.	2.8	104
35	Defining the Pseudomonas Genus: Where Do We Draw the Line with Azotobacter?. Microbial Ecology, 2012, 63, 239-248.	2.8	100
36	Microbial comparative pan-genomics using binomial mixture models. BMC Genomics, 2009, 10, 385.	2.8	94

#	Article	IF	CITATIONS
37	Genomic Characterization of Campylobacter jejuni Strain M1. PLoS ONE, 2010, 5, e12253.	2.5	86
38	RpoD Promoters in Campylobacter jejuni Exhibit a Strong Periodic Signal Instead of a â^35 Box. Journal of Molecular Biology, 2003, 326, 1361-1372.	4.2	84
39	Meeting report: GenBank microbial genomic taxonomy workshop (12–13 May, 2015). Standards in Genomic Sciences, 2016, 11, .	1.5	81
40	CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data. Bioinformatics, 2004, 20, 3682-3686.	4.1	80
41	Characterization of probiotic Escherichia coli isolates with a novel pan-genome microarray. Genome Biology, 2007, 8, R267.	9.6	80
42	Genome organisation and chromatin structure in Escherichia coli. Biochimie, 2001, 83, 201-212.	2.6	79
43	Genomic variation in Salmonella enterica core genes for epidemiological typing. BMC Genomics, 2012, 13, 88.	2.8	76
44	PARP1 Is Up-Regulated in Non-small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcystin. Frontiers in Microbiology, 2018, 9, 1757.	3.5	76
45	Case of Microcephaly after Congenital Infection with Asian Lineage Zika Virus, Thailand. Emerging Infectious Diseases, 2018, 24, 1758-1761.	4.3	75
46	Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis. Applied and Environmental Microbiology, 2016, 82, 375-383.	3.1	70
47	LeuO is a global regulator of gene expression in <i>Salmonella enterica</i> serovar Typhimurium. Molecular Microbiology, 2012, 85, 1072-1089.	2.5	68
48	The genome BLASTatlas—a GeneWiz extension for visualization of whole-genome homology. Molecular BioSystems, 2008, 4, 363.	2.9	67
49	Three views of microbial genomes. Research in Microbiology, 1999, 150, 773-777.	2.1	65
50	The σ54regulon (sigmulon) ofPseudomonas putida. Environmental Microbiology, 2003, 5, 1281-1293.	3.8	65
51	Standard operating procedure for computing pangenome trees. Standards in Genomic Sciences, 2010, 2, 135-141.	1.5	64
52	Mechanisms linking preterm birth to onset of cardiovascular disease later in adulthood. European Heart Journal, 2019, 40, 1107-1112.	2.2	64
53	DNA Binding Is Not Sufficient for H-NS-mediated Repression ofproU Expression. Journal of Biological Chemistry, 1997, 272, 12083-12090.	3.4	63
54	Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment. Frontiers in Microbiology, 2015, 6, 1118.	3.5	60

#	Article	IF	CITATIONS
55	An environmental signature for 323 microbial genomes based on codon adaptation indices. Genome Biology, 2006, 7, R114.	9.6	59
56	Polyclonality of Concurrent Natural Populations of Alteromonas macleodii. Genome Biology and Evolution, 2012, 4, 1360-1374.	2.5	57
57	Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis. Molecular Genetics and Genomics, 2004, 272, 173-180.	2.1	56
58	Genome update: the 1000th genome – a cautionary tale. Microbiology (United Kingdom), 2010, 156, 603-608.	1.8	55
59	<i>Ebolavirus</i> comparative genomics. FEMS Microbiology Reviews, 2015, 39, 764-778.	8.6	54
60	Investigations of Oligonucleotide Usage Variance Within and Between Prokaryotes. PLoS Computational Biology, 2008, 4, e1000057.	3.2	53
61	Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Communications Biology, 2021, 4, 117.	4.4	52
62	[13] Probing DNA structure with psoralen in vitro. Methods in Enzymology, 1992, 212, 242-262.	1.0	50
63	DNA microarray analysis of fim mutations in Escherichia coli. Molecular Genetics and Genomics, 2002, 267, 721-729.	2.1	49
64	On the Origins of a Vibrio Species. Microbial Ecology, 2010, 59, 1-13.	2.8	48
65	Strand misalignments lead to quasipalindrome correction. Trends in Genetics, 2003, 19, 365-369.	6.7	47
66	Veillonella, Firmicutes: Microbes disguised as Gram negatives. Standards in Genomic Sciences, 2013, 9, 431-448.	1.5	47
67	Pan-Genome Analysis of Human Gastric Pathogen <i>H. pylori</i> : Comparative Genomics and Pathogenomics Approaches to Identify Regions Associated with Pathogenicity and Prediction of Potential Core Therapeutic Targets. BioMed Research International, 2015, 2015, 1-17.	1.9	47
68	Chromatin architecture and gene expression in Escherichia coli. Genome Biology, 2004, 5, 252.	9.6	46
69	Complete Genome Sequence of the Commensal Enterococcus faecalis 62, Isolated from a Healthy Norwegian Infant. Journal of Bacteriology, 2011, 193, 2377-2378.	2.2	46
70	Rapid Sequencing of Multiple RNA Viruses in Their Native Form. Frontiers in Microbiology, 2019, 10, 260.	3.5	46
71	Toward unrestricted use of public genomic data. Science, 2019, 363, 350-352.	12.6	45
72	Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina. BMC Genomics, 2007, 8, 325.	2.8	44

#	Article	IF	CITATIONS
73	The TNFα receptor TNFRSF1A and genes encoding the amiloride-sensitive sodium channel ENaC as modulators in cystic fibrosis. Human Genetics, 2006, 119, 331-343.	3.8	43
74	Comparative Genomics to Delineate Pathogenic Potential in Non-O157 Shiga Toxin-Producing Escherichia coli (STEC) from Patients with and without Haemolytic Uremic Syndrome (HUS) in Norway. PLoS ONE, 2014, 9, e111788.	2.5	41
75	DNA: Structure and function. Advances in Genome Biology, 1998, 5, 1-141.	0.3	39
76	Analysis of intra-genomic GC content homogeneity within prokaryotes. BMC Genomics, 2010, 11, 464.	2.8	39
77	Environmental influences on the in vivo level of intramolecular triplex DNA in Escherichia coli. Biochemistry, 1993, 32, 6206-6213.	2.5	38
78	Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer. Scientific Reports, 2017, 7, 40712.	3.3	38
79	Genome update: sigma factors in 240 bacterial genomes. Microbiology (United Kingdom), 2005, 151, 3147-3150.	1.8	37
80	Quality scores for 32,000 genomes. Standards in Genomic Sciences, 2014, 9, 20.	1.5	36
81	Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes. PLoS ONE, 2013, 8, e69878.	2.5	36
82	Functionality of System Components: Conservation of Protein Function in Protein Feature Space. Genome Research, 2003, 13, 2444-2449.	5.5	35
83	Identification of putative noncoding RNA genes in the <i>Burkholderia cenocepacia</i> J2315 genome. FEMS Microbiology Letters, 2007, 276, 83-92.	1.8	35
84	Reliability and applications of statistical methods based on oligonucleotide frequencies in bacterial and archaeal genomes. BMC Genomics, 2008, 9, 104.	2.8	35
85	Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in theCFTRgene. FEBS Journal, 2002, 269, 553-559.	0.2	34
86	Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae. BMC Genomics, 2007, 8, 397.	2.8	33
87	Transcriptomics and adaptive genomics of the asymptomatic bacteriuria Escherichia coli strain 83972. Molecular Genetics and Genomics, 2008, 279, 523-534.	2.1	33
88	Toward a Standards-Compliant Genomic and Metagenomic Publication Record. OMICS A Journal of Integrative Biology, 2008, 12, 157-160.	2.0	33
89	Is the pan-genome also a pan-selectome?. F1000Research, 2012, 1, 16.	1.6	33
90	Bias of purine stretches in sequenced chromosomes. Computers & Chemistry, 2002, 26, 531-541.	1.2	32

#	Article	lF	CITATIONS
91	Genome Update: proteome comparisons. Microbiology (United Kingdom), 2005, 151, 1-4.	1.8	32
92	Campylobacter fetus subspecies: Comparative genomics and prediction of potential virulence targets. Gene, 2012, 508, 145-156.	2.2	32
93	Sigma factors in a thousand <i><scp>E</scp>. coli</i> genomes. Environmental Microbiology, 2013, 15, 3121-3129.	3.8	32
94	Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass. Biotechnology for Biofuels, 2017, 10, 14.	6.2	30
95	Environmental Influences on DNA Curvature. Journal of Biomolecular Structure and Dynamics, 1999, 16, 811-823.	3.5	29
96	Genomic Standards Consortium Projects. Standards in Genomic Sciences, 2014, 9, 599-601.	1.5	29
97	Clobal features of the <i>Alcanivorax borkumensis</i> SK2 genome. Environmental Microbiology, 2008, 10, 614-625.	3.8	28
98	Computational genomics-proteomics and Phylogeny analysis of twenty one mycobacterial genomes (Tuberculosis & non Tuberculosis strains). Microbial Informatics and Experimentation, 2012, 2, 7.	7.6	28
99	[18] Analysis of DNA structure in vivo using psoralen photobinding: Measurement of supercoiling, topological domains, and DNA-protein interactions. Methods in Enzymology, 1992, 212, 319-335.	1.0	27
100	A Classification of Possible Routes of Darwinian Evolution. Journal of Theoretical Biology, 2000, 203, 111-116.	1.7	27
101	Inheritance and organisation of the mitochondrial genome differ between two Saccharomyces yeasts. Journal of Molecular Biology, 2002, 318, 627-636.	4.2	27
102	Genome update: distribution of two-component transduction systems in 250 bacterial genomes. Microbiology (United Kingdom), 2005, 151, 3447-3452.	1.8	27
103	dBBQs: dataBase of Bacterial Quality scores. BMC Bioinformatics, 2017, 18, 483.	2.6	27
104	Genomic Standards Consortium Projects. Standards in Genomic Sciences, 2014, 9, 599-601.	1.5	26
105	Genome Update: DNA repeats in bacterial genomes. Microbiology (United Kingdom), 2004, 150, 3519-3521.	1.8	25
106	Analysis and prediction of gene splice sites in four Aspergillus genomes. Fungal Genetics and Biology, 2009, 46, S14-S18.	2.1	25
107	Formation of a Combined H-DNA/Open TATA Box Structure in the Promoter Sequence of the Human Na,K-ATPase α2 Gene. Journal of Biological Chemistry, 1996, 271, 13441-13447.	3.4	24
108	Design of a Seven-Genome Escherichia coli Microarray for Comparative Genomic Profiling. Journal of Bacteriology, 2006, 188, 7713-7721.	2.2	24

#	Article	IF	CITATIONS
109	Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods. BMC Evolutionary Biology, 2010, 10, 249.	3.2	24
110	Bayesian prediction of bacterial growth temperature range based on genome sequences. BMC Genomics, 2012, 13, S3.	2.8	24
111	Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition. Infection and Immunity, 2015, 83, 1749-1764.	2.2	24
112	A novel Cas9-targeted long-read assay for simultaneous detection of IDH1/2 mutations and clinically relevant MGMT methylation in fresh biopsies of diffuse glioma. Acta Neuropathologica Communications, 2020, 8, 87.	5.2	24
113	Genome Update: annotation quality in sequenced microbial genomes. Microbiology (United Kingdom), 2004, 150, 2015-2017.	1.8	22
114	Extracytoplasmic function sigma factors in Pseudomonas syringae. Trends in Microbiology, 2005, 13, 565-568.	7.7	22
115	GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes. Standards in Genomic Sciences, 2009, 1, 204-215.	1.5	21
116	PanViz: interactive visualization of the structure of functionally annotated pangenomes. Bioinformatics, 2017, 33, 1081-1082.	4.1	21
117	Genome update: prediction of secreted proteins in 225 bacterial proteomes. Microbiology (United) Tj ETQq1 1 C).784314 ı 1.8	rgBT /Overloc
118	Suggested mechanisms for Zika virus causing microcephaly: what do the genomes tell us?. BMC Bioinformatics, 2017, 18, 471.	2.6	20
119	The Plasmid Genome Database. Microbiology (United Kingdom), 2003, 149, 3043-3045.	1.8	18
120	GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes. Standards in Genomic Sciences, 2009, 1, 204-215.	1.5	18
121	Analysis of genomic signatures in prokaryotes using multinomial regression and hierarchical clustering. BMC Genomics, 2009, 10, 487.	2.8	17
122	Relative entropy differences in bacterial chromosomes, plasmids, phages and genomic islands. BMC Genomics, 2012, 13, 66.	2.8	17
123	Decaffeinated Green Tea Extract Does Not Elicit Hepatotoxic Effects and Modulates the Gut Microbiome in Lean B6C3F1 Mice. Nutrients, 2019, 11, 776.	4.1	17
124	PanFunPro: PAN-genome analysis based on FUNctional PROfiles. F1000Research, 0, 2, 265.	1.6	17
125	Genome Update: AT content in sequenced prokaryotic genomes. Microbiology (United Kingdom), 2004, 150, 749-752.	1.8	16
126	Vibrio chromosome-specific families. Frontiers in Microbiology, 2014, 5, 73.	3.5	16

127The queC Cene Has Recently Spread between Rolling Circle Plasmids of Staphylococcus, Indicative of a New Cene Transfer Mechanism. Fronters in Microbiology, 2016, 7, 1528.3.515128Prediction of highly expressed genes in microbes based on chromatin accessibility. , 2007, 8, 11.14129Genomic Analysis of Two Component Signal Transduction Proteins in Basidiomycets. Journal of head and neck cancer patients. Journal of Microbiological Methods, 2019, 166, 105759.1.613130An assessment of Oxford Nanopore sequencing for human gut metagenome profiling: A plot study of head and neck cancer patients. Journal of Microbiological Methods, 2019, 166, 105759.1.612131Comparative genomics of green sulfur bacteria. Photosynthesis Research, 2010, 104, 137-152.2.912132Genome Sequence of Campylobacter Jejuni strain 327, a strain Isolated from a turkey slaughterhouse.1.612133Genome Sequence of No Strees Folerant Campylobacter Jejuni Poultry Strains, 305 and DFVF 1099.2.212134Unique and conserved genome regions in Whith harveyi and related species in comparison with the shrimp pathogen Whith harvey (CAM 1792. Microbiology United Kingdom), 2015, 161, 1762-1779.1.612135Adomain sequence approach to pangenomics: applications to Escherichia coli. F1000Research, 2012, 1.1.612136Genomic characterization of mumpa witruses from a large-scale mumps outbreak in Arkansas, 2016.2.311137Too Genese of Vancomycin-Resistant Enternet applications to Escherichia coli. F1000Research, 2012, 1.1.612138Reprotorit characterization of mumpa wit	#	Article	IF	CITATIONS
129 Genomic Analysis of Two-Component Signal Transduction Proteins in Basidiomycetes. Journal of Microbiology and Biotechnology, 2010, 18, 63-73. 1.0 14 130 An assessment of Oxford Nanopore sequencing for human gut metagenome profiling: A pilot study of head and neck cancer patients. Journal of Microbiological Methods, 2019, 166, 105739. 1.6 13 131 Comparative genomics of green sulfur bacteria. Photosynthesis Research, 2010, 104, 137-152. 2.9 12 132 Genome Sequence of Campylobacter Jejuni strain 327, a strain isolated from a turkey slaughterhouse. 1.6 13 133 Genome Sequences of Two Stress-Tolerant Campylobacter Jejuni Poultry Strains, 305 and DFVF1099. 2.2 12 134 Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAM 1792. Microbiology (United Kingdom), 2015, 161, 1762-1779. 1.8 12 135 Adomain sequence approach to pangenomics: applications to Escherichia coli. F1000Research, 2012, 1. 1.6 12 136 Genomic characterization of mumps vituses from a large scale mumps outbreak in Arkansas, 2016. 2.8 11 137 Dato onychin Resistant Enterococcus faecium Bacterennia With Development of Infection, Genetics and Ecolumo, 2019, 75, 103965. 2.8 11 138 Report of the 2019 NIST-FDA workshop on standards for next g	127	The qacC Gene Has Recently Spread between Rolling Circle Plasmids of Staphylococcus, Indicative of a Novel Gene Transfer Mechanism. Frontiers in Microbiology, 2016, 7, 1528.	3.5	15
Molecular Microbiology and Biotechnology, 2010, 18, 63-73. 100 14 130 An assessment of Oxford Nanopore sequencing for human gut metagenome profiling: A pilot study of head and neck cancer patients, Journal of Microbiological Methods, 2019, 166, 105739. 1.6 13 131 Comparative genomics of green sulfur bacteria. Photosynthesis Research, 2010, 104, 137-152. 2.0 12 132 Genome Sequence of Campylobacter jejuni strain 327, a strain isolated from a turkey slaughterhouse. 1.5 12 133 Comparative genomics of green sulfur bacteria. Photosynthesis Research, 2010, 104, 137-152. 2.0 12 134 Cenome Sequence of Campylobacter jejuni strain 327, a strain isolated from a turkey slaughterhouse. 1.5 12 135 Cenome Sequence of Two Stress-Tolerant Campylobacter jejuni Poultry Strains, 305 and DFVF1099. 2.2 12 134 Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrinip pathogen Vibrio harveyi CAM 1792. Microbiology (United Kingdom), 2015, 161, 1762-1779. 1.8 12 135 A domain sequence approach to pangenomics: applications to Escherichia coli. F10000Research, 2012, 1, 1.6 12 136 Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. 2.3 11 137 Two Cases of Vancomy	128	Prediction of highly expressed genes in microbes based on chromatin accessibility. , 2007, 8, 11.		14
130 head and neck cancer patients, journal of Microbiological Methods, 2019, 166, 105739. 1.0 13 131 Comparative genomics of green sulfur bacteria. Photosynthesis Research, 2010, 104, 137-152. 2.9 12 132 Genome Sequence of Campylobacter jejuni strain 327, a strain isolated from a turkey slaughterhouse. 1.5 12 133 Genome Sequences of Two Stress-Tolerant Campylobacter jejuni Poultry Strains, 305 and DFVF1099. 2.2 12 134 Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAIM 1792. Microbiology (United Kingdom), 2015, 161, 1762-1779. 1.8 12 135 Adomain sequence approach to pangenomics: applications to Escherichia coli. F1000Research, 2012, 1. 1.6 12 136 Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. 2.3 11 137 Daptomycin-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing. Open Forum Infections Desease, 2020, 7, 61a1 80. 13 14 11 138 Report of the 2019 NIST-FDA workshop on standards for next generation sequencing. Open Forum Infections Desease, 2020, 7, 61a1 80. 11 11 139 Comparative Genomics of Four Pseudomonas Species. , 2004, , 139-164. 11 11 11	129	Genomic Analysis of Two-Component Signal Transduction Proteins in Basidiomycetes. Journal of Molecular Microbiology and Biotechnology, 2010, 18, 63-73.	1.0	14
132 Genome Sequence of Campylobacter jejuni strain 327, a strain isolated from a turkey slaughterhouse. 1.5 12 133 Genome Sequences of Two Stress-Tolerant Campylobacter jejuni Poultry Strains, 305 and DFVF1099. 2.2 12 134 Unique and conserved genome regions in Vibrio harveyl and related species in comparison with the shrimp pathogen Vibrio harveyl CAIM 1792. Microbiology (United Kingdom), 2015, 161, 1762-1779. 1.8 12 135 Adomain sequence approach to pangenomics: applications to Escherichia coli. F1000Research, 2012, 1, 1.6 12 136 Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. 1.6 12 137 Desptomycin-Resistant Enterococcus facelum Bacteremia With Development of Desptomycin-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing. Open Forum Infectious Diseases, 2020, 7, ofaa180. 1.4 11 138 Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals, 2020, 64, 76-82. 1.4 11 140 Omparative Genomics of (J>Pseudomonas aeruginosa (J)> PAO1 and (J>Pseudomonas putida (J)> KT2440: 0.5 11 141 The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. 8.6 11 142 Design and construction of a circular inte	130		1.6	13
132 Standards in Genomic Sciences, 2011, 4, 113-122. 1.3 12 133 Genome Sequences of Two Stress Tolerant Campylobacter jejuni Poultry Strains, 305 and DFVF1099. 2.2 12 134 Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAIM 1792. Microbiology (United Kingdom), 2015, 161, 1762-1779. 1.8 12 134 Unique and conserved genome regions in Vibrio harveyi calm regions to Escherichia coli. F1000Research, 2012, 1. 1.6 12 135 A domain sequence approach to pangenomics: applications to Escherichia coli. F1000Research, 2012, 1. 1.6 12 136 Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. 2.3 11 137 Two Cases of Vancomycln-Resistant Enterococcus facclum Bacteremia With Development of Daptomycln-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing, Open Forum Infectious Diseases, 2020, 7, of aal 80. 11 138 Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals, 2020, 64, 76-82. 1.4 11 139 Comparative Genomics of Four Pseudomonas aeruginosa 2.004, , 139-164. 11 140 Orthologs, Codon Usage, Repetitive Extragenic Palindromic Elements, and Oligonucleotide	131	Comparative genomics of green sulfur bacteria. Photosynthesis Research, 2010, 104, 137-152.	2.9	12
133 journal of Bacteriology, 2011, 193, 5546-5547. 22 12 134 Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAIM 1792. Microbiology (United Kingdom), 2015, 161, 1762-1779. 1.8 12 135 A domain sequence approach to pangenomics: applications to Escherichia coli. F1000Research, 2012, 1, 1.6 12 136 Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. 2.3 11 136 Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. 2.3 11 137 Two Cases of Vancomycin-Resistant Enterococcus faecium Bacteremia With Development of Daptomycin-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing. Open Forum Infectious Diseases, 2020, 7, ofaa180. 0.9 11 138 Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals, 2020, 64, 76-82. 1.4 11 139 Comparative Genomics of Four Pseudomonas Species., 2004, , 139-164. 11 140 Comparative Genomics of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. 8.6 11 141 The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. 8.6 </td <td>132</td> <td></td> <td>1.5</td> <td>12</td>	132		1.5	12
134 shrimp pathogen Vibrio harveyi CAIM 1792. Microbiology (United Kingdom), 2015, 161, 1762-1779. 1.8 12 135 A domain sequence approach to pangenomics: applications to Escherichia coli. F1000Research, 2012, 1, 19. 1.6 12 136 Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. 2.3 11 136 Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. 2.3 11 137 Two Cases of Vancomycin-Resistant Enterococcus faecium Bacteremia With Development of Daptomycin-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing. Open Forum Infectious Diseases, 2020, 7, ofaa180. 0.9 11 138 Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals, 2020, 64, 76-82. 1.4 11 138 Comparative Genomics of <0 > Pseudomonas Species., 2004, , 139-164. 11 11 140 Comparative Genomics of <0 > Pseudomonas aeruginosa > PSeudomonas putida 0.5 11 141 The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. 8.6 11 142 Design and construction of a circular intensity differential scattering instrument. Review of 12 10	133		2.2	12
137 19. 10 12 136 Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. Infection, Genetics and Evolution, 2019, 75, 103965. 2.3 11 136 Two Cases of Vancomycin-Resistant Enterococcus faecium Bacteremia With Development of Daptomycin-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing. Open Forum Infectious Diseases, 2020, 7, ofaal 80. 0.9 11 138 Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals, 2020, 64, 76-82. 1.4 11 139 Comparative Genomics of Four Pseudomonas Species. , 2004, , 139-164. 11 140 Comparative Genomics of <1>Pseudomonas aeruginosa PAO1 and <1>Pseudomonas putida 0.5 11 140 The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. FEMS Microbiology Reviews, 2022, 46, . 8.6 11 141 Design and construction of a circular intensity differential scattering instrument. Review of 1.8 10	134		1.8	12
136 Infection, Genetics and Evolution, 2019, 75, 103965. 2.3 11 137 Two Cases of Vancomycin-Resistant Enterococcus faecium Bacteremia With Development of Daptomycin-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing. Open Forum 0.9 11 137 Daptomycin-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing. Open Forum 0.9 11 138 Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals, 2020, 64, 76-82. 1.4 11 139 Comparative Genomics of Four Pseudomonas Species. , 2004, , 139-164. 11 11 140 Orthologs, Codon Usage, Repetitive Extragenic Palindromic Elements, and Oligonucleotide Motif Signatures. Journal of Genome Science and Technology, 2002, 1, 175-187. 0.5 11 141 The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. 8.6 11 142 Design and construction of a circular intensity differential scattering instrument. Review of 1.8 10	135		1.6	12
137 Daptomycin-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing. Open Forum 0.9 11 138 Report of the 2019 NIST-FDA workshop on standards for next generation sequencing detection of viral adventitious agents in biologics and biomanufacturing. Biologicals, 2020, 64, 76-82. 1.4 11 139 Comparative Genomics of Four Pseudomonas Species. , 2004, , 139-164. 11 140 Comparative Genomics of <1> Pseudomonas aeruginosa PAO1 and <1> Pseudomonas putida NT2440: 140 Orthologs, Codon Usage, Repetitive Extragenic Palindromic Elements, and Oligonucleotide Motif Signatures. Journal of Genome Science and Technology, 2002, 1, 175-187. 11 141 The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. 8.6 11 142 Design and construction of a circular intensity differential scattering instrument. Review of 1.9 1.9	136		2.3	11
138 adventitious agents in biologics and biomanufacturing. Biologicals, 2020, 64, 76-82. 1.4 11 139 Comparative Genomics of Four Pseudomonas Species. , 2004, , 139-164. 11 140 Comparative Genomics of <1> Pseudomonas aeruginosa PAO1 and <1> Pseudomonas putida KT2440: 140 Orthologs, Codon Usage, Repetitive Extragenic Palindromic Elements, and Oligonucleotide Motif 0.5 11 141 The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. 8.6 11 142 Design and construction of a circular intensity differential scattering instrument. Review of 1.8 10	137	Daptomycin-Resistant Phenotype and its Detection Using Oxford Nanopore Sequencing. Open Forum	0.9	11
140 Comparative Genomics of <1>Pseudomonas aeruginosa PAO1 and <1>Pseudomonas putida KT2440: Orthologs, Codon Usage, Repetitive Extragenic Palindromic Elements, and Oligonucleotide Motif 0.5 11 140 The first three waves of Genome Science and Technology, 2002, 1, 175-187. 0.5 11 141 The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. 8.6 11 142 Design and construction of a circular intensity differential scattering instrument. Review of 1.8 10	138		1.4	11
 Orthologs, Codon Usage, Repetitive Extragenic Palindromic Elements, and Oligonucleotide Motif 0.5 11 Signatures. Journal of Genome Science and Technology, 2002, 1, 175-187. The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. B.6 11 Design and construction of a circular intensity differential scattering instrument. Review of 18 10 	139	Comparative Genomics of Four Pseudomonas Species. , 2004, , 139-164.		11
141 FEMS Microbiology Reviews, 2022, 46, . 0.0 11 142 Design and construction of a circular intensity differential scattering instrument. Review of 1.8 10	140	Orthologs, Codon Usage, Repetitive Extragenic Palindromic Elements, and Oligonucleotide Motif	0.5	11
	141		8.6	11
	142		1.3	10
143Visualization of pathogenicity regions in bacteria. Genetica, 2000, 108, 47-51.1.110	143	Visualization of pathogenicity regions in bacteria. Genetica, 2000, 108, 47-51.	1.1	10

Genome Update: length distributions of sequenced prokaryotic genomes. Microbiology (United) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6

#	Article	IF	CITATIONS
145	Genome Comparison of Bacterial Pathogens. Genome Dynamics, 2009, 6, 1-20.	2.4	10
146	Non-O1 Vibrio cholerae unlinked to cholera in Haiti. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3206-E3206.	7.1	10
147	The Atlas visualization of genomewide information. Methods in Microbiology, 2002, , 49-63.	0.8	9
148	Analysis of two large functionally uncharacterized regions in the Methanopyrus kandleri AV19 genome. BMC Genomics, 2003, 4, 12.	2.8	9
149	Genome Update: Chromosome Atlases. Microbiology (United Kingdom), 2004, 150, 3091-3093.	1.8	9
150	Differences in two-component signal transduction proteins among the genus Brucella: Implications for host preference and pathogenesis. Veterinary Microbiology, 2010, 144, 478-483.	1.9	9
151	SMARC-B1 deficient sinonasal carcinoma metastasis to the brain with next generation sequencing data: a case report of perineural invasion progressing to leptomeningeal invasion. BMC Cancer, 2019, 19, 827.	2.6	9
152	Two SARS-CoV-2 Genome Sequences of Isolates from Rural U.S. Patients Harboring the D614G Mutation, Obtained Using Nanopore Sequencing. Microbiology Resource Announcements, 2021, 10, .	0.6	9
153	Appendix Estimation of superhelical density in Vivo from analysis of the level of cruciforms existing in living cells. Journal of Molecular Biology, 1991, 221, 122-129.	4.2	8
154	Genome Update: 161 prokaryotic genomes sequenced, and counting. Microbiology (United Kingdom), 2004, 150, 261-263.	1.8	8
155	Studies on Monitoring and Tracking Genetic Resources: An Executive Summary. Standards in Genomic Sciences, 2009, 1, 78-86.	1.5	8
156	Analysis of evolutionary patterns of genes in Campylobacter jejuni and C. coli. Microbial Informatics and Experimentation, 2012, 2, 8.	7.6	8
157	A domain sequence approach to pangenomics: applications to Escherichia coli. F1000Research, 2012, 1, 19.	1.6	8
158	Genome Update: Protein secretion systems in 225 bacterial genomes. Microbiology (United Kingdom), 2005, 151, 1013-1016.	1.8	7
159	16S rRNA Gene Amplicon Profiling of Baby and Adult Captive Elephants in Thailand. Microbiology Resource Announcements, 2020, 9, .	0.6	7
160	Genome Update: promoter profiles. Microbiology (United Kingdom), 2004, 150, 2791-2793.	1.8	6
161	Genome update: prediction of membrane proteins in prokaryotic genomes. Microbiology (United) Tj ETQq1 1 0.	784314 rg 1.8	BT/Overloc
162	Stretches of alternating pyrimidine/purines and purines are respectively linked with pathogenicity and	2.8	6

growth temperature in prokaryotes. BMC Genomics, 2009, 10, 346.

3

#	ARTICLE	IF	CITATIONS
163	Three Complete Genome Sequences of Genotype G Mumps Virus from the 2016 Outbreak in Arkansas, USA. Genome Announcements, 2017, 5, .	0.8	6
164	Genome-Based Comparison of Clostridioides difficile: Average Amino Acid Identity Analysis of Core Genomes. Microbial Ecology, 2018, 76, 801-813.	2.8	6
165	Complete Genome Sequences of Four Isolates of Vancomycin-Resistant Enterococcus faecium with the <i>vanA</i> Gene and Two Daptomycin Resistance Mutations, Obtained from Two Inpatients with Prolonged Bacteremia. Microbiology Resource Announcements, 2020, 9, .	0.6	6
166	Visualization and Significance of DNA Structural Motifs in the Campylobacter jejuni Genome. Journal of Genome Science and Technology, 2002, 1, 16-25.	0.5	6
167	Bayesian prediction of microbial oxygen requirement. F1000Research, 2013, 2, 184.	1.6	6
168	Genome Update: tRNAs in sequenced microbial genomes. Microbiology (United Kingdom), 2004, 150, 1603-1606.	1.8	5
169	Genome Update: rRNAs in sequenced microbial genomes. Microbiology (United Kingdom), 2004, 150, 1113-1115.	1.8	5
170	Genome Sequences of Zika Virus Strains Recovered from Amniotic Fluid, Placenta, and Fetal Brain of a Microcephaly Patient in Thailand, 2017. Microbiology Resource Announcements, 2018, 7, .	0.6	5
171	Consent insufficient for data release—Response. Science, 2019, 364, 446-446.	12.6	5
172	Complete Genome and Plasmid Sequences of Escherichia coli Type Strain ATCC 11775. Microbiology Resource Announcements, 2019, 8, .	0.6	5
173	Comparative genomics of hepatitis A virus, hepatitis C virus, and hepatitis E virus provides insights into the evolutionary history of <i>Hepatovirus</i> species. MicrobiologyOpen, 2020, 9, e973.	3.0	5
174	Gender Differences in the Gut Microbiome and How These Affect Cardiovascular Diseases. , 2018, , 89-100.		5
175	Is the pan-genome also a pan-selectome?. F1000Research, 0, , .	1.6	5
176	Genome Update: correlation of bacterial genomic properties. Microbiology (United Kingdom), 2004, 150, 3899-3903.	1.8	4
177	Genome Update: 2D clustering of bacterial genomes. Microbiology (United Kingdom), 2005, 151, 333-336.	1.8	4
178	Leaner and meaner genomes in Escherichia coli. Genome Biology, 2006, 7, 237.	9.6	4
179	Assessment of Bacterial Load in Polyethylene Terephthalate (PET) Bottled Water Marketed in Kathmandu Valley, Nepal. International Journal of Polymer Science, 2021, 2021, 1-10.	2.7	4

180 DNA Bendability and Nucleosome Positioning in Transcriptional Regulation. , 2005, , 189-202.

#	Article	IF	CITATIONS
181	The Importance of Virulence Prediction and Gene Networks in Microbial Risk Assessment. Human and Ecological Risk Assessment (HERA), 2007, 13, 254-268.	3.4	3
182	Word Frequencies and Repeats. Computational Biology, 2009, , 137-150.	0.2	3
183	Draft Genome Sequences of 48 Vancomycin-Resistant Enterococcus faecium Strains Isolated from Inpatients with Bacteremia and Urinary Tract Infection. Microbiology Resource Announcements, 2019, 8, .	0.6	3
184	Design of an Enterobacteriaceae Pan-Genome Microarray Chip. Communications in Computer and Information Science, 2010, , 165-179.	0.5	3
185	Two novel methods for using genome sequences to infer taxonomy. Microbiology (United Kingdom), 2012, 158, 1414-1414.	1.8	3
186	Structural features of fungal genomes. , 0, , 47-77.		2
187	Microbial Communities: Core and Pan-Genomics. Computational Biology, 2009, , 213-228.	0.2	2
188	Insights from Comparative Genomics of the Genus Salmonella. , 2017, , .		2
189	Genome Update: alignment of bacterial chromosomes. Microbiology (United Kingdom), 2004, 150, 2491-2493.	1.8	1
190	Genome Update: base skews in 200+ bacterial chromosomes. Microbiology (United Kingdom), 2005, 151, 633-637.	1.8	1
191	Genome update: purine strand bias in 280 bacterial genomes. Microbiology (United Kingdom), 2006, 152, 579-583.	1.8	1
192	Comparative Genomics. , 2013, , 209-227.		1
193	Conservation of Two-Component Signal Transduction Systems in E. coli, Salmonella, and Across 100,000 Bacteria of Various Bacterial Phyla. Grand Challenges in Biology and Biotechnology, 2018, , 153-174.	2.4	1
194	Is amplification bias consequential in transposon sequencing (TnSeq) assays? A case study with a Staphylococcus aureus TnSeq library subjected to PCR-based and amplification-free enrichment methods. Microbial Genomics, 2021, 7, .	2.0	1
195	Microbial Genome Sequences: A New Era in Microbiology. Computational Biology, 2009, , 37-51.	0.2	1
196	Systems biology: in the broadest sense of the word. Environmental Microbiology, 2005, 7, 482-483.	3.8	0
197	17 The TNFα receptor TNFRSF1A and genes encoding the amiloride-sensitive sodium channel ENaC as modulators in Cystic Fibrosis. Journal of Cystic Fibrosis, 2006, 5, S5.	0.7	0
198	Sequences as Biological Information: Cells Obey the Laws of Chemistry and Physics. Computational Biology, 2009, , 3-17.	0.2	0

#	Article	IF	CITATIONS
199	Methods to Compare Genomes The First Examples. Computational Biology, 2009, , 95-109.	0.2	0
200	Genomic Properties: Length, Base Composition and DNA Structures. Computational Biology, 2009, , 111-135.	0.2	0
201	Expression of Genes and Proteins. Computational Biology, 2009, , 167-187.	0.2	0
202	Evolution of Microbial Communities; or, On the Origins of Bacterial Species. Computational Biology, 2009, , 243-256.	0.2	0
203	Natural genetic engineering: intelligence & design in evolution?. Microbial Informatics and Experimentation, 2011, 1, .	7.6	0
204	In silico Selection of Amplification Targets for Rapid Polymorphism Screening in Ebola Virus Outbreaks. Frontiers in Microbiology, 2019, 10, 857.	3.5	0
205	GENE-18. TRANSCRIPTOME-WIDE ANALYSIS USING NANOPORE THIRD GENERATION SEQUENCING IN A RAT GLIOBLASTOMA MODEL: PROOF OF PRINCIPLE. Neuro-Oncology, 2019, 21, vi101-vi101.	1.2	0
206	PATH-05. RAPID SIMULTANEOUS IDH MUTATION AND MGMT METHYLATION STATUS ASSESSMENT IN GLIOMA PATIENTS USING CRISPR-Cas9-TARGETED NANOPORE SEQUENCING. Neuro-Oncology, 2019, 21, vi143-vi144.	1.2	0
207	ProdMX: Rapid query and analysis of protein functional domain based on compressed sparse matrices. Computational and Structural Biotechnology Journal, 2020, 18, 3890-3896.	4.1	0
208	Special Issue on Campylobacter and Helicobacter Genomics. Journal of Genome Science and Technology, 2003, 2, 1-1.	0.5	0
209	The Genome Atlas Resource. Communications in Computer and Information Science, 2010, , 141-150.	0.5	0
210	Genome Atlases, Potential Applications in Study of Metagenomes. , 2013, , 1-4.		0
211	Genome Atlases, Potential Applications in Study of Metagenomes. , 2015, , 219-222.		0
212	Of Proteins, Genomes, and Proteomes. Computational Biology, 2009, , 189-210.	0.2	0
213	Metagenomics of Microbial Communities. Computational Biology, 2009, , 229-242.	0.2	0
214	Bioinformatics for Microbiologists: An Introduction. Computational Biology, 2009, , 19-35.	0.2	0
215	An Overview of Genome Databases. Computational Biology, 2009, , 53-67.	0.2	0
216	The Challenges of Programming: A Brief Introduction. Computational Biology, 2009, , 69-91.	0.2	0

#	Article	IF	CITATIONS
217	Transcriptomics: Translated and Untranslated RNA. Computational Biology, 2009, , 153-166.	0.2	0
218	A domain sequence approach to pangenomics: applications to Escherichia coli. F1000Research, 0, , .	1.6	0