Jian Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8918347/publications.pdf

Version: 2024-02-01

31	3,114	23	31
papers	citations	h-index	g-index
31	31	31	2732
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adsorptive removal of PPCPs from aqueous solution using carbon-based composites: A review. Chinese Chemical Letters, 2022, 33, 3585-3593.	9.0	53
2	Efficient removal of roxarsone and emerging organic contaminants by a solar light-driven in-situ Fenton system. Chemical Engineering Journal, 2022, 435, 132434.	12.7	15
3	Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	3.0	3
4	<i>De Novo</i> Production of Plant 4′-Deoxyflavones Baicalein and Oroxylin A from Ethanol in Crabtree-Negative Yeast. ACS Synthetic Biology, 2022, 11, 1600-1612.	3.8	16
5	Enhanced activation of PMS by a novel Fenton-like composite Fe3O4/S-WO3 for rapid chloroxylenol degradation. Chemical Engineering Journal, 2022, 446, 137067.	12.7	44
6	Isotherm models for adsorption of heavy metals from water - A review. Chemosphere, 2022, 307, 135545.	8.2	144
7	The effects and mechanisms of zero-valent iron on anaerobic digestion of solid waste: A mini-review. Journal of Cleaner Production, 2021, 278, 123567.	9.3	52
8	High-efficiency adsorption of tetracycline by cooperation of carbon and iron in a magnetic Fe/porous carbon hybrid with effective Fenton regeneration. Applied Surface Science, 2021, 538, 147813.	6.1	67
9	Multifunctional Antibacterial Materials for the Control of Hazardous Microbes and Chemicals: A Review. ACS ES&T Water, 2021, 1, 479-497.	4.6	30
10	Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides. Chemical Engineering Journal, 2021, 422, 130126.	12.7	177
11	Dramatic enhancement effects of l-cysteine on the degradation of sulfadiazine in Fe3+/CaO2 system. Journal of Hazardous Materials, 2020, 383, 121133.	12.4	76
12	Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review. Chemosphere, 2020, 241, 125043.	8.2	190
13	A novel hollow-sphere cyclodextrin nanoreactor for the enhanced removal of bisphenol A under visible irradiation. Journal of Hazardous Materials, 2020, 384, 121267.	12.4	37
14	Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. Journal of Hazardous Materials, 2020, 382, 121040.	12.4	254
15	Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+. Journal of Hazardous Materials, 2020, 389, 121897.	12.4	144
16	Combinatorial strategies for production improvement of red pigments from Antarctic fungus Geomyces sp.Â. Journal of Food Science, 2020, 85, 3061-3071.	3.1	5
17	PDA-cross-linked beta-cyclodextrin: a novel adsorbent for the removal of BPA and cationic dyes. Water Science and Technology, 2020, 81, 2337-2350.	2.5	11
18	Fe3O4/graphene aerogels: A stable and efficient persulfate activator for the rapid degradation of malachite green. Chemosphere, 2020, 251, 126402.	8.2	74

#	Article	IF	Citations
19	Accelerated photoelectron transmission by carboxymethyl \hat{l}^2 -cyclodextrin for organic contaminants removal: An alternative to noble metal catalyst. Journal of Hazardous Materials, 2020, 393, 122414.	12.4	30
20	Enhanced removal of bisphenol A by cyclodextrin in photocatalytic systems: Degradation intermediates and toxicity evaluation. Chinese Chemical Letters, 2020, 31, 2623-2626.	9.0	84
21	A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2020, 32, e2000385.	21.0	169
22	Degradation of sulfanilamide by Fenton-like reaction and optimization using response surface methodology. Ecotoxicology and Environmental Safety, 2019, 172, 334-340.	6.0	65
23	A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Progress in Materials Science, 2019, 105, 100576.	32.8	209
24	Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 2019, 252, 352-365.	7.5	791
25	Attractive In Situ Selfâ€Reconstructed Hierarchical Gradient Structure of Metallic Glass for High Efficiency and Remarkable Stability in Catalytic Performance. Advanced Functional Materials, 2019, 29, 1807857.	14.9	74
26	Adsorptive removal of bisphenol A, chloroxylenol, and carbamazepine from water using a novel \hat{l}^2 -cyclodextrin polymer. Ecotoxicology and Environmental Safety, 2019, 170, 278-285.	6.0	120
27	Compelling Rejuvenated Catalytic Performance in Metallic Glasses. Advanced Materials, 2018, 30, e1802764.	21.0	115
28	Bioprocess exploration for thermostable \hat{l}_{\pm} -amylase production of a deep-sea thermophile Geobacillus sp. in high-temperature bioreactor. Preparative Biochemistry and Biotechnology, 2016, 46, 620-627.	1.9	3
29	Characterization of a thermostable raw-starch hydrolyzing \hat{l}_{\pm} -amylase from deep-sea thermophile Geobacillus sp Protein Expression and Purification, 2015, 114, 15-22.	1.3	44
30	Optimization of nutrients for dinactin production by a marine Streptomyces sp. from the high latitude Arctic. Biotechnology and Bioprocess Engineering, 2015, 20, 725-732.	2.6	6
31	Development of a responsive methanol sensor and its application in Pichia pastoris fermentation. Biotechnology Letters, 2002, 24, 643-646.	2.2	12