Masanori Sakamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8918/publications.pdf

Version: 2024-02-01

96 papers 2,395 citations

236925 25 h-index 254184 43 g-index

100 all docs

100 docs citations

100 times ranked 3256 citing authors

#	Article	IF	CITATIONS
1	Band Engineering-Tuned Localized Surface Plasmon Resonance in Diverse-Phased Cu _{2–<i>x</i>} S _{<i>y</i>} Se _{1–<i>y</i>} Nanocrystals. Journal of Physical Chemistry C, 2022, 126, 8107-8112.	3.1	3
2	Exciton Recycling in Triplet Energy Transfer from a Defect-Rich Quantum Dot to an Organic Molecule. Journal of Physical Chemistry C, 2022, 126, 11674-11679.	3.1	1
3	Morphology-Dependent Coherent Acoustic Phonon Vibrations and Phonon Beat of Au Nanopolyhedrons. ACS Omega, 2021, 6, 5485-5489.	3.5	5
4	Gold Nanocluster Functionalized with Peptide Dendron Thiolates: Acceleration of the Photocatalytic Oxidation of an Amino Alcohol in a Supramolecular Reaction Field. ACS Catalysis, 2021, 11, 13180-13187.	11.2	12
5	Near-Unity Singlet Fission on a Quantum Dot Initiated by Resonant Energy Transfer. Journal of the American Chemical Society, 2021, 143, 17388-17394.	13.7	10
6	Collective enhancement of quantum coherence in coupled quantum dot films. Physical Review B, 2021, 104, .	3.2	6
7	Phase segregated Cu _{2â^'x} Se/Ni ₃ Se ₄ bimetallic selenide nanocrystals formed through the cation exchange reaction for active water oxidation precatalysts. Chemical Science, 2020, 11, 1523-1530.	7.4	26
8	Number of Surface-Attached Acceptors on a Quantum Dot Impacts Energy Transfer and Photon Upconversion Efficiencies. ACS Photonics, 2020, 7, 1876-1884.	6.6	13
9	Hard X-ray excited optical luminescence from protein-directed Auâ^1/420 clusters. RSC Advances, 2020, 10, 13824-13829.	3.6	3
10	Plasmon-Induced Carrier Transfer for Infrared Light Energy Conversion. , 2020, , 211-222.		0
11	Anomalous Photoinduced Hole Transport in Type I Core/Mesoporous-Shell Nanocrystals for Efficient Photocatalytic H ₂ Evolution. ACS Nano, 2019, 13, 8356-8363.	14.6	44
12	Impact of Orbital Hybridization at Molecule–Metal Interface on Carrier Dynamics. Journal of Physical Chemistry C, 2019, 123, 25877-25882.	3.1	7
13	Clear and transparent nanocrystals for infrared-responsive carrier transfer. Nature Communications, 2019, 10, 406.	12.8	33
14	Carrier-Selective Blocking Layer Synergistically Improves the Plasmonic Enhancement Effect. Journal of the American Chemical Society, 2019, 141, 8402-8406.	13.7	25
15	Plasmonic p–n Junction for Infrared Light to Chemical Energy Conversion. Journal of the American Chemical Society, 2019, 141, 2446-2450.	13.7	110
16	Durian-Shaped CdS@ZnSe Core@Mesoporous-Shell Nanoparticles for Enhanced and Sustainable Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry Letters, 2018, 9, 2212-2217.	4.6	31
17	Phase-segregated NiP _x @FeP _y O _z core@shell nanoparticles: ready-to-use nanocatalysts for electro- and photo-catalytic water oxidation through <i>i>in situ</i> activation by structural transformation and spontaneous ligand removal. Chemical Science, 2018, 9, 4830-4836.	7.4	21
18	Boosting photocatalytic overall water splitting by Co doping into Mn ₃ O ₄ nanoparticles as oxygen evolution cocatalysts. Nanoscale, 2018, 10, 10420-10427.	5.6	56

#	Article	lF	CITATIONS
19	Ligand effect on the catalytic activity of porphyrin-protected gold clusters in the electrochemical hydrogen evolution reaction. Chemical Science, 2018, 9, 261-265.	7.4	34
20	Quantum coherence of multiple excitons governs absorption cross-sections of PbS/CdS core/shell nanocrystals. Nature Communications, 2018, 9, 3179.	12.8	23
21	Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface. Nature Communications, 2018, 9, 2314.	12.8	103
22	Coulomb blockade and Coulomb staircase behavior observed at room temperature. Materials Research Express, 2017, 4, 024004.	1.6	9
23	Porphyrin Derivative-Protected Gold Cluster with a Pseudotetrahedral Shape. Journal of Physical Chemistry C, 2017, 121, 10760-10766.	3.1	3
24	Molecular floating-gate single-electron transistor. Scientific Reports, 2017, 7, 1589.	3.3	12
25	Formation of Layerâ€byâ€Layer Assembled Cocatalyst Films of S ^{2â^'} â€Stabilized Ni ₃ S ₄ Nanoparticles for Hydrogen Evolution Reaction. ChemNanoMat, 2017, 3, 764-771.	2.8	5
26	Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers. Science and Technology of Advanced Materials, 2017, 18, 374-380.	6.1	13
27	Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals. Physical Review Letters, 2017, 119, 247401.	7.8	18
28	Memory operations in Au nanoparticle single-electron transistors with floating gate electrodes. Applied Physics Letters, 2016, 109 , .	3.3	8
29	Light-stimulated carrier dynamics of CulnS ₂ /CdS heterotetrapod nanocrystals. Nanoscale, 2016, 8, 9517-9520.	5.6	22
30	Tin Ion Directed Morphology Evolution of Copper Sulfide Nanoparticles and Tuning of Their Plasmonic Properties via Phase Conversion. Langmuir, 2016, 32, 7582-7587.	3.5	30
31	Rhombic Coulomb diamonds in a single-electron transistor based on an Au nanoparticle chemically anchored at both ends. Nanoscale, 2016, 8, 4720-4726.	5.6	14
32	Radio-frequency capacitance spectroscopy of metallic nanoparticles. Scientific Reports, 2015, 5, 10858.	3.3	10
33	Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge. Journal of Applied Physics, 2015, 118, .	2.5	14
34	Photoinduced Carrier Dynamics of Nearly Stoichiometric Oleylamine-Protected Copper Indium Sulfide Nanoparticles and Nanodisks. Journal of Physical Chemistry C, 2015, 119, 11100-11105.	3.1	18
35	Control of charging energy in chemically assembled nanoparticle single-electron transistors. Nanotechnology, 2015, 26, 045702.	2.6	19
36	Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction. Nanoscale, 2015, 7, 12435-12444.	5.6	50

3

#	Article	IF	CITATIONS
37	Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters. Chemical Communications, 2014, 50, 3549-3551.	4.1	43
38	Strongest π–metal orbital coupling in a porphyrin/gold cluster system. Chemical Science, 2014, 5, 2007-2010.	7.4	15
39	Assessment of Hot-Carrier Effects on Charge Separation in Type-II CdS/CdTe Heterostructured Nanorods. Journal of Physical Chemistry Letters, 2014, 5, 2951-2956.	4.6	19
40	Investigation on photo-induced charge separation in CdS/CdTe nanopencils. Chemical Science, 2014, 5, 3831-3835.	7.4	12
41	Charge Separation in Type-II Semiconductor Heterodimers. Journal of Physical Chemistry Letters, 2013, 4, 2867-2873.	4.6	73
42	Crystal structure-selective formation and carrier dynamics of type-II CdS–Cu31S16 heterodimers. Journal of Materials Chemistry C, 2013, 1, 3391.	5 . 5	7
43	Rigid bidentate ligands focus the size of gold nanoparticles. Chemical Science, 2013, 4, 824-828.	7.4	7
44	Ultrafast dynamics and single particle spectroscopy of Au–CdSe nanorods. Physical Chemistry Chemical Physics, 2013, 15, 2141.	2.8	37
45	Silicon–Nitride-Passivated Bottom-Up Single-Electron Transistors. Japanese Journal of Applied Physics, 2013, 52, 110101.	1.5	9
46	Random telegraph signals by alkanethiol-protected Au nanoparticles in chemically assembled single-electron transistors. Journal of Applied Physics, 2013, 114, .	2.5	13
47	Highly Dispersive Deposition of Pt Nanoparticles on CdS Nanostructures for Photocatalytic Hydrogen Evolution. Chemistry Letters, 2012, 41, 1325-1327.	1.3	9
48	Uniform charging energy of single-electron transistors by using size-controlled Au nanoparticles. Applied Physics Letters, 2012, 100, 033101.	3.3	52
49	Characterization of thiol-functionalized oligo(phenylene-ethynylene)-protected Au nanoparticles by scanning tunneling microscopy and spectroscopy. Applied Physics Letters, 2012, 101, 083115.	3.3	13
50	Ideal Discrete Energy Levels in Synthesized Au Nanoparticles for Chemically Assembled Single-Electron Transistors. ACS Nano, 2012, 6, 9972-9977.	14.6	24
51	Platonic Hexahedron Composed of Six Organic Faces with an Inscribed Au Cluster. Journal of the American Chemical Society, 2012, 134, 816-819.	13.7	25
52	Logic Operations of Chemically Assembled Single-Electron Transistor. ACS Nano, 2012, 6, 2798-2803.	14.6	79
53	Coulomb blockade behaviors in individual Au nanoparticles as observed through noncontact atomic force spectroscopy at room temperature. Nanotechnology, 2012, 23, 185704.	2.6	4
54	Nanoparticle single-electron transistor with metal-bridged top-gate and nanogap electrodes. Applied Physics Letters, 2011, 99, .	3.3	24

#	Article	IF	CITATIONS
55	Photochemistry for the Synthesis of Noble Metal Nanoparticles. Bulletin of the Chemical Society of Japan, 2010, 83, 1133-1154.	3.2	29
56	Electron Transfer from Oligothiophenes in the Higher Triplet Excited States. Journal of Physical Chemistry A, 2010, 114, 10789-10794.	2.5	6
57	Photochemical fabrication of silvernanostructures at the solid–liquid interface using a recyclable photosensitized reduction process. Physical Chemistry Chemical Physics, 2010, 12, 365-372.	2.8	3
58	Light as a construction tool of metal nanoparticles: Synthesis and mechanism. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 33-56.	11.6	337
59	α-Bond Dissociation of <i>p</i> -Phenylbenzoyl Derivatives in the Higher Triplet Excited State Studied by Two-Color Two-Laser Flash Photolysis. Journal of Physical Chemistry A, 2009, 113, 1696-1703.	2.5	5
60	Photoreactivity of As-Fabricated Au Clusters at the Single-Cluster Level. Journal of the American Chemical Society, 2009, 131, 6-7.	13.7	53
61	Photochemical Reactivity of Gold Clusters: Dependence on Size and Spin Multiplicity. Langmuir, 2009, 25, 13888-13893.	3.5	46
62	Twoâ€Laserâ€Guided Threeâ€Dimensional Microfabrication and Processing in a Flexible Polymer Matrix. Advanced Materials, 2008, 20, 3427-3432.	21.0	20
63	Three-Dimensional Writing of Copper Nanoparticles in a Polymer Matrix with Two-Color Laser Beams. Chemistry of Materials, 2008, 20, 2060-2062.	6.7	24
64	Reversible Intramolecular Tripletâ^'Triplet Energy Transfer in Benzophenone-N-methylphthalimide Dyad. Journal of Physical Chemistry A, 2008, 112, 1403-1407.	2.5	8
65	Photodecomposition Profiles of \hat{l}^2 -Bond Cleavage of Phenylphenacyl Derivatives in the Higher Triplet Excited States during Stepwise Two-Color Two-Laser Flash Photolysis. Journal of Physical Chemistry A, 2008, 112, 11306-11311.	2.5	7
66	One-Electron Oxidation of Alcohols by the 1,3,5-Trimethoxybenzene Radical Cation in the Excited State during Two-Color Two-Laser Flash Photolysis. Journal of Physical Chemistry A, 2007, 111, 1788-1791.	2.5	12
67	Intermolecular Electron Transfer from Excited Benzophenone Ketyl Radical. Journal of Physical Chemistry A, 2007, 111, 223-229.	2.5	27
68	Design of Cyclic Reaction Driven by Two-Color Two-Photon Excitation. Journal of Physical Chemistry C, 2007, 111, 6917-6919.	3.1	8
69	Energy Levels of Oligothiophenes in the Higher Excited Triplet States. Journal of Physical Chemistry C, 2007, 111, 1024-1028.	3.1	10
70	Intramolecular Triplet Energy Transfer via Higher Triplet Excited State during Stepwise Two-Color Two-Laser Irradiation. Journal of Physical Chemistry A, 2007, 111, 9781-9788.	2.5	13
71	CO-Bond Cleavage of Esters with a Naphthyl Group in the Higher Triplet Excited State during Two-Color Two-Laser Flash Photolysis. Chemistry - A European Journal, 2007, 13, 3143-3149.	3.3	12
72	Association Behavior of a Nitrilotriaceticâ€Acidâ€Modified Dye in a Poly(Vinyl Alcohol) Film Containing Ni(II)â€Adsorbed Gold Nanoparticles. ChemPhysChem, 2007, 8, 1701-1706.	2.1	8

#	Article	IF	CITATIONS
73	The C–O bond dissociation of naphthoxymethyl compounds in the higher triplet excited state using two-color two-laser flash photolysis. Chemical Physics Letters, 2007, 443, 248-252.	2.6	5
74	Properties and Reactivity of Xanthyl Radical in the Excited State. Journal of Physical Chemistry A, 2006, 110, 9788-9792.	2.5	4
75	Solvent Effect on the Deactivation Processes of Benzophenone Ketyl Radicals in the Excited State. Journal of Physical Chemistry A, 2006, 110, 11800-11808.	2.5	17
76	Acceleration of Laser-Induced Formation of Gold Nanoparticles in a Poly(vinyl alcohol) Film. Langmuir, 2006, 22, 6361-6366.	3.5	39
77	Two-color two-laser fabrication of gold nanoparticles in a PVA film. Chemical Physics Letters, 2006, 420, 90-94.	2.6	46
78	Direct fluorescence lifetime measurement of excited radical cation of 1,3,5-trimethoxybenzene by ns–ps two-color two-laser flash photolysis. Chemical Physics Letters, 2006, 432, 436-440.	2.6	8
79	Properties of Excited Ketyl Radicals of Benzophenone Analogues Affected by the Size and Electronic Character of the Aromatic Ring Systems. Chemistry - A European Journal, 2006, 12, 1610-1617.	3.3	14
80	Homolytic cleavage of C–Si bond of p-trimethylsilylmethylacetophenone upon stepwise two-photon excitation using two-color two-laser flash photolysis. Chemical Physics Letters, 2005, 407, 402-406.	2.6	15
81	Higher Triplet Excited States of Benzophenones and Bimolecular Triplet Energy Transfer Measured by Using Nanosecond-Picosecond Two-Color/Two-Laser Flash Photolysis. Chemistry - A European Journal, 2005, 11, 6471-6477.	3.3	33
82	Remarkable Reactivities of the Xanthone Ketyl Radical in the Excited State Compared with That in the Ground State. Journal of Physical Chemistry A, 2005, 109, 2452-2458.	2.5	13
83	Dual Electron Transfer Pathways from 4,4â€~-Dimethoxybenzophenone Ketyl Radical in the Excited State to Parent Molecule in the Ground State. Journal of Physical Chemistry A, 2005, 109, 6830-6835.	2.5	14
84	Câ^'O Bond Cleavage of Benzophenone Substituted by 4-CH2OR (R= C6H5and CH3) with Stepwise Two-Photon Excitation. Journal of Physical Chemistry A, 2005, 109, 5989-5994.	2.5	19
85	Significant Effects of Substituents on Substituted Naphthalenes in the Higher Triplet Excited State. Journal of Physical Chemistry A, 2005, 109, 4657-4661.	2.5	21
86	Stepwise Photocleavage of Câ ⁻ 'O Bonds of Bis(substituted-methyl)naphthalenes with Stepwise Excitation by Two-Color Two-Laser and Three-Color Three-Laser Irradiations. Journal of Physical Chemistry A, 2005, 109, 3797-3802.	2.5	18
87	Anomalous Fluorescence from the Azaxanthone Ketyl Radical in the Excited State. Journal of the American Chemical Society, 2005, 127, 3702-3703.	13.7	23
88	Transient Absorption Spectra and Lifetimes of Benzophenone Ketyl Radicals in the Excited State. Journal of Physical Chemistry A, 2004, 108, 8147-8150.	2.5	45
89	Transient Phenomena of Polyphenyls in the Higher Triplet Excited State. Journal of Physical Chemistry A, 2004, 108, 9361-9364.	2.5	16
90	Rate Constant of Bimolecular Triplet Energy Transfer from Chrysene in the Higher Triplet Excited States. Journal of Physical Chemistry A, 2004, 108, 7147-7150.	2.5	12

#	Article	IF	CITATIONS
91	Stepwise Photocleavage of Two Câ^'O Bonds of 1,8-Bis[(4-benzoylphenoxy)-methyl]naphthalene with Three-Step Excitation Using Three-Color, Three-Laser Flash Photolysis. Journal of the American Chemical Society, 2004, 126, 7432-7433.	13.7	21
92	Competitive Marcus-Type Electron Transfer and Energy Transfer from the Higher Triplet Excited State. Journal of Physical Chemistry A, 2004, 108, 10941-10948.	2.5	10
93	Intermolecular Electron Transfer from Naphthalene Derivatives in the Higher Triplet Excited States. Journal of the American Chemical Society, 2004, 126, 9709-9714.	13.7	30
94	Quenching processes of aromatic hydrocarbons in the higher triplet excited states-energy transfer vs. electron transferElectronic supplementary information (ESI) available: The quenching of DBA(Tn) by CCl4, CHR(Tn) by NAP, the evidences of no DBA and CHR ions produced during two-color two-laser flash photolysis, and the evidence of formation of benzene/Cl complex. See http://www.rsc.org/suppdata/cp/b4/b400128a/. Physical Chemistry Chemical Physics, 2004, 6, 1735.	2.8	12
95	Benzophenones in the higher triplet excited statesThis paper is dedicated to Professor Fred Lewis on the event of his 60th birthday Photochemical and Photobiological Sciences, 2003, 2, 1209.	2.9	28
96	Rapid cleavage of the naphthylmethyl–oxygen bond in higher triplet excited states. Chemical Communications, 2003, , 2604-2605.	4.1	16