Ai-Dong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8917833/publications.pdf

Version: 2024-02-01

197 papers	6,077 citations	94269 37 h-index	70 g-index
199	199	199	8815 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4, 864-873.	19.8	736
2	Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nature Communications, 2015, 6, 6991.	5.8	505
3	Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. Journal of Power Sources, 2014, 266, 433-439.	4.0	212
4	Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nature Communications, 2017, 8, 15217.	5.8	165
5	Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials, 2020, 32, e1907058.	11.1	148
6	Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle. Journal of Solid State Chemistry, 2010, 183, 1359-1364.	1.4	144
7	Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition. Journal of Applied Physics, 2000, 88, 5941-5945.	1.1	141
8	The Antibacterial Activity of Ta-doped ZnO Nanoparticles. Nanoscale Research Letters, 2015, 10, 1047.	3.1	141
9	Enhanced electrochemical performance of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material by ultrathin ZrO 2 coating. Journal of Alloys and Compounds, 2016, 657, 593-600.	2.8	117
10	Improvement of electrochemical performance of nickel rich LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ cathode active material by ultrathin TiO ₂ coating. Dalton Transactions, 2016, 45, 9669-9675.	1.6	99
11	Processing- and composition-dependent characteristics of chemical solution deposited Bi _{4â^x} La _x Ti ₃ O ₁₂ thin films. Journal of Materials Research, 2001, 16, 1325-1332.	1.2	88
12	Preparation, characterization and photocatalytic properties of ZnTiO3 powders. Journal of Hazardous Materials, 2009, 171, 918-923.	6. 5	88
13	Fabrication and electrical properties of sol-gel derived BaTiO3 films with metallic LaNiO3 electrode. Applied Physics Letters, 1997, 70, 1616-1618.	1.5	87
14	Atomic layer deposition of Co ₃ O ₄ on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology, 2015, 26, 094001.	1.3	84
15	Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications. Nanoscale Research Letters, 2015, 10, 135.	3.1	84
16	Preparation, characterization of the Ta-doped ZnO nanoparticles and their photocatalytic activity under visible-light illumination. Journal of Solid State Chemistry, 2009, 182, 2061-2067.	1.4	83
17	Preparation of perovskite conductive LaNiO3 films by metalorganic decomposition. Applied Physics Letters, 1996, 68, 1347-1349.	1.5	82
18	Visible Light-Driven Photocatalytic Performance of N-Doped ZnO/g-C3N4 Nanocomposites. Nanoscale Research Letters, 2017, 12, 526.	3.1	69

#	Article	IF	Citations
19	Dielectric characterization of Bi3.25La0.75Ti3O12 thin films. Applied Physics Letters, 2004, 84, 4505-4507.	1.5	65
20	Bipolar Resistive Switching Characteristics of HfO2/TiO2/HfO2 Trilayer-Structure RRAM Devices on Pt and TiN-Coated Substrates Fabricated by Atomic Layer Deposition. Nanoscale Research Letters, 2017, 12, 393.	3.1	64
21	Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. Journal of Alloys and Compounds, 2017, 694, 848-856.	2.8	64
22	Characteristics of LaAlO3 gate dielectrics on Si grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2003, 83, 3540-3542.	1.5	61
23	Co-doped titanate nanotubes. Applied Physics Letters, 2005, 87, 112501.	1.5	59
24	Preparation and visible-light photocatalytic properties of BiNbO4 and BiTaO4 by a citrate method. Journal of Solid State Chemistry, 2013, 202, 6-14.	1.4	59
25	Enhanced visible light photocatalytic activity of Fe2O3 modified TiO2 prepared by atomic layer deposition. Scientific Reports, 2020, 10, 13437.	1.6	59
26	Reviewâ€"Resistive-Type Hydrogen Sensors Based on Zinc Oxide Nanostructures. Journal of the Electrochemical Society, 2020, 167, 067528.	1.3	59
27	Structure and electrical properties of Bi3.15Nd0.85Ti3O12 ferroelectric thin films. Journal of Applied Physics, 2004, 95, 4275-4281.	1.1	55
28	The effect of thermal treatment induced inter-diffusion at the interfaces on the charge trapping performance of HfO2/Al2O3 nanolaminate-based memory devices. Journal of Applied Physics, 2013, 114, .	1.1	54
29	Thickness-dependent metal-insulator transition in epitaxial SrRuO3 ultrathin films. Journal of Applied Physics, 2015, 117, .	1.1	54
30	Synaptic Plasticity and Learning Behaviors Mimicked in Single Inorganic Synapses of Pt/HfOx/ZnOx/TiN Memristive System. Nanoscale Research Letters, 2017, 12, 65.	3.1	46
31	Mechanical switching of ferroelectric polarization in ultrathin BaTiO3 films: The effects of epitaxial strain. Applied Physics Letters, 2014, 104, .	1.5	45
32	Fatigue study of metalorganic-decomposition-derived SrBi2Ta2O9 thin films: The effect of partial switching. Applied Physics Letters, 2000, 76, 2208-2210.	1.5	43
33	Enhanced electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 coated by molecular layer deposition derived dual-functional C-Al2O3 composite coating. Journal of Alloys and Compounds, 2019, 799, 89-98.	2.8	43
34	Atomic Layer Deposition of Highâ€Capacity Anodes for Nextâ€Generation Lithiumâ€Ion Batteries and Beyond. Energy and Environmental Materials, 2021, 4, 363-391.	7.3	43
35	Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films, 2013, 535, 39-43.	0.8	42
36	Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blue. Nanotechnology, 2015, 26, 024002.	1.3	40

#	Article	IF	CITATIONS
37	Theoretical design and computational screening of precursors for atomic layer deposition. Coordination Chemistry Reviews, 2016, 322, 94-103.	9.5	40
38	Porous ZnO nanosheet arrays constructed on weaved metal wire for flexible dye-sensitized solar cells. Nanoscale, 2013, 5, 5102.	2.8	38
39	Theoretical Understanding of the Reaction Mechanism of SiO ₂ Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 1247-1255.	3.2	38
40	Atomic layer deposition of ZnO/TiO2 nanolaminates as ultra-long life anode material for lithium-ion batteries. Scientific Reports, 2019, 9, 11526.	1.6	38
41	A TiAl2O5 nanocrystal charge trap memory device. Applied Physics Letters, 2010, 97, 143504.	1.5	37
42	Impact of the interfaces in the charge trap layer on the storage characteristics of ZrO2/Al2O3 nanolaminate-based charge trap flash memory cells. Materials Letters, 2013, 92, 21-24.	1.3	36
43	Flexible Metal–Insulator Transitions Based on van der Waals Oxide Heterostructures. ACS Applied Materials & Interfaces, 2019, 11, 8284-8290.	4.0	35
44	Cobaltâ€Doping Stabilized Active and Durable Subâ€2Ânm Pt Nanoclusters for Lowâ€Ptâ€Loading PEMFC Cathode. Advanced Energy Materials, 2022, 12, .	10.2	35
45	Interfacial structure and electrical properties of ultrathin HfO ₂ dielectric films on Si substrates by surface sol–gel method. Journal Physics D: Applied Physics, 2009, 42, 015405.	1.3	34
46	Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPt _{<i>x</i>x} Nanocrystals for Resistive Random Access Memory Applications. ACS Applied Materials & Deposition of the Access Memory Application of the Access Memory Access	4.0	33
47	Thermal atomic layer etching: Mechanism, materials and prospects. Progress in Natural Science: Materials International, 2018, 28, 667-675.	1.8	33
48	Self-catalysis by aminosilanes and strong surface oxidation by O ₂ plasma in plasma-enhanced atomic layer deposition of high-quality SiO ₂ . Chemical Communications, 2015, 51, 1341-1344.	2.2	32
49	Abnormal phase transition in BiNbO4 powders prepared by a citrate method. Journal of Alloys and Compounds, 2011, 509, 10230-10233.	2.8	31
50	Temperature-dependent tunneling electroresistance in Pt/BaTiO3/SrRuO3 ferroelectric tunnel junctions. Applied Physics Letters, 2013, 103, .	1.5	31
51	In Situ Formation of Polycyclic Aromatic Hydrocarbons as an Artificial Hybrid Layer for Lithium Metal Anodes. Nano Letters, 2022, 22, 263-270.	4.5	31
52	Comparison of chemical stability and corrosion resistance of group IV metal oxide films formed by thermal and plasma-enhanced atomic layer deposition. Scientific Reports, 2019, 9, 10438.	1.6	30
53	Improved corrosion protection of CrN hard coating on steel sealed with TiOxNy-TiN composite layers. Surface and Coatings Technology, 2020, 381, 125108.	2.2	29
54	Preparation of (Ba0.5Sr0.5)TiO3 thin films by sol–gel method with rapid thermal annealing. Applied Surface Science, 2000, 165, 309-314.	3.1	28

#	Article	IF	Citations
55	Preparation of (1â^'x%)(Na0.5Bi0.5)TiO3â€"x%SrTiO3 thin films by a solâ€"gel method for dielectric tunable applications. Journal of Sol-Gel Science and Technology, 2009, 49, 29-34.	1.1	28
56	Improved electrochemical performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ with ultrathin and thickness-controlled TiO ₂ shell via atomic layer deposition technology. RSC Advances, 2016, 6, 100841-100848.	1.7	28
57	Photocatalytic Properties of Co3O4-Coated TiO2 Powders Prepared by Plasma-Enhanced Atomic Layer Deposition. Nanoscale Research Letters, 2017, 12, 497.	3.1	28
58	Resistive Switching Properties and Failure Behaviors of (Pt, Cu)/Amorphous ZrO2/Pt Sandwich Structures. Journal of Materials Science and Technology, 2016, 32, 676-680.	5.6	27
59	A facile route to prepare TiO2/g-C3N4 nanocomposite photocatalysts by atomic layer deposition. Journal of Alloys and Compounds, 2021, 855, 157446.	2.8	27
60	Electrical properties of chemical-solution-derived Bi3.54Nd0.46Ti3O12 ferroelectric thin films. Journal of Applied Physics, 2003, 94, 7376-7378.	1.1	26
61	Temperature-dependent leakage current characteristics of Pr and Mn cosubstituted BiFeO3 thin films. Applied Physics Letters, 2010, 96, 202904.	1.5	26
62	Dualâ€Design of Nanoporous to Compact Interface via Atomic/Molecular Layer Deposition Enabling a Longâ€Life Silicon Anode. Advanced Functional Materials, 2022, 32, 2109682.	7.8	26
63	The metallic interface between insulating NdGaO ₃ and SrTiO ₃ perovskites. Applied Physics Letters, 2013, 103, 201602.	1.5	25
64	Self-formed porous Ni(OH)2 on Ni3S2/Ni foam during electrochemical cycling for high performance supercapacitor with ultrahigh areal capacitance. Electrochimica Acta, 2019, 303, 148-156.	2.6	25
65	Effect of excess bismuth on the microstructures and electrical properties of strontium bismuth tantalate (SBT) thin films. Thin Solid Films, 2000, 375, 215-219.	0.8	24
66	Effects of processing on the characteristics of SrBi2Ta2O9 films prepared by metalorganic decomposition. Journal of Applied Physics, 2000, 88, 1035-1041.	1.1	24
67	Growth characteristics of Ti-based fumaric acid hybrid thin films by molecular layer deposition. Dalton Transactions, 2015, 44, 14782-14792.	1.6	24
68	A comparative study of growth and properties of atomic layer deposited transparent conductive oxide of Al doped ZnO films from different Al precursors. Thin Solid Films, 2018, 646, 126-131.	0.8	24
69	Conductive metallic LaNiO3 films from metallo-organic precursors. Thin Solid Films, 1997, 298, 165-169.	0.8	23
70	Magnetic properties of FePt nanoparticle assemblies embedded in atomic-layer-deposited Al2O3. Journal of Materials Chemistry, 2011, 21, 5046.	6.7	23
71	Surface Pseudorotation in Lewis-Base-Catalyzed Atomic Layer Deposition of SiO ₂ : Static Transition State Search and Born–Oppenheimer Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2012, 116, 26436-26448.	1.5	22
72	Optimization of oxygen vacancy concentration in HfO2/HfOx bilayer-structured ultrathin memristors by atomic layer deposition and their biological synaptic behavior. Journal of Materials Chemistry C, 2020, 8, 12478-12484.	2.7	22

#	Article	IF	CITATIONS
73	Fabrication and electrical properties of sol-gel derived (BaSr)TiO3 thin films with metallic LaNiO3 electrode. Thin Solid Films, 1998, 336, 172-175.	0.8	21
74	Charge Trapping Memory Characteristics of p-Si/Ultrathin Al[sub 2]O[sub 3]â^•(HfO[sub 2])[sub 0.8](Al[sub 2]O[sub 3])[sub 0.2]â^•Al[sub 2]O[sub 3]/Metal Multilayer Structure. Electrochemical and Solid-State Letters, 2011, 14, G13.	2.2	21
75	Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents. Colloids and Surfaces B: Biointerfaces, 2014, 121, 238-247.	2.5	21
76	ZnO/ZnS Core-Shell Nanowires Arrays on Ni Foam Prepared by Atomic Layer Deposition for High Performance Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A3493-A3498.	1.3	21
77	TiOxNy Modified TiO2 Powders Prepared by Plasma Enhanced Atomic Layer Deposition for Highly Visible Light Photocatalysis. Scientific Reports, 2018, 8, 12131.	1.6	21
78	Improved tribological properties and corrosion protection of CrN coating by ultrathin composite oxide interlayer. Applied Surface Science, 2021, 541, 148606.	3.1	21
79	TEM and AFM study of perovskite conductive LaNiO3 films prepared by metalorganic decomposition. Thin Solid Films, 1998, 336, 386-390.	0.8	20
80	Improved interfacial and electrical properties of atomic layer deposition HfO2 films on Ge with La2O3 passivation. Applied Surface Science, 2013, 264, 783-786.	3.1	20
81	Synaptic functions and a memristive mechanism on Pt/AlO _{<i>x</i>} /HfO _{<i>x</i>} /TiN bilayer-structure memristors. Journal Physics D: Applied Physics, 2020, 53, 035302.	1.3	20
82	Preparation and Characterization of Relaxor Ferroelectric 0.65Pb(Mg _{1/3} Nb _{2/3})O ₃ –0.35PbTiO ₃ by a Polymerizable Complex Method. Journal of the American Ceramic Society, 2009, 92, 1256-1261.	1.9	19
83	A facile way to deposit conformal Al2O3 thin film on pristine graphene by atomic layer deposition. Applied Surface Science, 2014, 291, 78-82.	3.1	19
84	Nonvolatile memory capacitors based on Al2O3 tunneling and HfO2 blocking layers with charge storage in atomic-layer-deposited Pt nanocrystals. Applied Surface Science, 2014, 289, 332-337.	3.1	19
85	Biomimetic strain sensors based on patterned polydimethylsiloxane and Ir nanoparticles decorated multi-walled carbon nanotubes. Sensors and Actuators A: Physical, 2019, 289, 57-64.	2.0	19
86	Structural and electrical properties of PbTiO3 thin films on conductive oxide LaNiO3 coated Si substrates prepared by sol–gel method. Thin Solid Films, 2000, 375, 220-223.	0.8	18
87	Synthesis, Characterization, and Applications of Waterâ€Soluble Tantalum Carboxylate Precursors via a Flux Method. Journal of the American Ceramic Society, 2009, 92, 1959-1965.	1.9	18
88	Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering. Scientific Reports, 2017, 7, 5161.	1.6	18
89	Leakage current characteristics of Ptâ^•Bi3.25La0.75Ti3O12â^•Pt thin-film capacitors. Journal of Applied Physics, 2005, 97, 106110.	1.1	16
90	Strontium-modified lead zirconate titanate thin films for electrically tunable device applications. Journal of Applied Physics, 2006, 100, 036102.	1.1	16

#	Article	IF	CITATIONS
91	Four-state non-volatile memory in a multiferroic spin filter tunnel junction. Applied Physics Letters, 2016, 109, .	1.5	16
92	Tailoring Stress and Ion-Transport Kinetics via a Molecular Layer Deposition-Induced Artificial Solid Electrolyte Interphase for Durable Silicon Composite Anodes. ACS Applied Materials & Electrolyte Interfaces, 2021, 13, 32520-32530.	4.0	16
93	Impact of the Al/Hf ratio on the electrical properties and band alignments of atomic-layer-deposited HfO ₂ /Al ₂ /Sub>O ₃ on S-passivated GaAs substrates. Semiconductor Science and Technology, 2010, 25, 055012.	1.0	15
94	Enhanced memory performance by tailoring the microstructural evolution of (ZrO2)0.6(SiO2)0.4 charge trapping layer in the nanocrystallites-based charge trap flash memory cells. Applied Physics A: Materials Science and Processing, 2012, 108, 217-222.	1.1	15
95	Atomic Layer Deposition of Alâ€doped ZnO Films Using Aluminum Isopropoxide as the Al Precursor. Chemical Vapor Deposition, 2013, 19, 180-185.	1.4	15
96	The Polymerization Effect on Synthesis and Visible-Light Photocatalytic Properties of Low-Temperature Î ² -BiNbO4 Using Nb-Citrate Precursor. Nanoscale Research Letters, 2015, 10, 457.	3.1	15
97	Effect of in situ applied electric field on the growth of La2Ti2O7 thin films by chemical solution deposition. Journal of Crystal Growth, 2004, 268, 198-203.	0.7	14
98	Strain effects on magnetic characteristics of ultrathin La0.7Sr0.3MnO3in epitaxial La0.7Sr0.3MnO3/BaTiO3superlattices. Journal of Applied Physics, 2012, 112, 123919.	1.1	14
99	Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process. Nanoscale Research Letters, 2018, 13, 47.	3.1	14
100	Simulation of Biologic Synapse Through Organic-Inorganic Hybrid Memristors Using Novel Ti-Based Maleic Acid/TiO2 Ultrathin Films. IEEE Electron Device Letters, 2020, 41, 155-158.	2.2	14
101	Ferroelectric properties of bilayer structured Pb(Zr0.52Ti0.48)O3/SrBi2Ta2O9 (PZT/SBT) thin films on Pt/TiO2/SiO2/Si substrates. Applied Surface Science, 2008, 254, 1583-1586.	3.1	13
102	Effect of chemical surface treatments on interfacial and electrical characteristics of atomic-layer-deposited Al2O3 films on Ge substrates. Applied Surface Science, 2011, 257, 4589-4592.	3.1	13
103	Resistive switching in \$\$hbox {BiFeO}_3\$\$ BiFeO 3 -based heterostructures due to ferroelectric modulation on interface Schottky barriers. Journal of Materials Science: Materials in Electronics, 2014, 25, 3251-3256.	1.1	13
104	Electromechanical Response from LaAlO ₃ /SrTiO ₃ Heterostructures. ACS Applied Materials & Diterfaces, 2015, 7, 10146-10151.	4.0	13
105	A facile and low-cost synthesis of Cu2ZnSn(S Se1â^')4 nanocrystals with tunable composition and optical band gap. Materials Letters, 2015, 150, 12-15.	1.3	13
106	High Visibleâ€Lightâ€Stimulated Plasticity in Optoelectronic Synaptic Transistors for Irradiation Historyâ€Dependent Learning. Advanced Electronic Materials, 2020, 6, 1901255.	2.6	13
107	Highly stretchable and sensitive strain sensor based on silver nanowires/carbon nanotubes on hair band for human motion detection. Progress in Natural Science: Materials International, 2021, 31, 379-386.	1.8	13
108	Outstanding memory characteristics with atomic layer deposited Ta2O5/Al2O3/TiO2/Al2O3/Ta2O5 nanocomposite structures as the charge trapping layer. Applied Surface Science, 2019, 467-468, 423-427.	3.1	12

#	Article	IF	CITATIONS
109	The dominant factors affecting the memory characteristics of (Ta2O5)x(Al2O3)1â^'x high-k charge-trapping devices. Applied Physics Letters, 2014, 105, .	1.5	11
110	A Novel Simple Route to Synthesize Aqueous Niobium and Tantalum Precursors for Ferroelectric and Photocatalytic Applications. Materials Research Society Symposia Proceedings, 2006, 942, 1.	0.1	10
111	Bipolar resistive switching based on SrTiO3/YBa2Cu3O7epi-layers. Journal Physics D: Applied Physics, 2013, 46, 035308.	1.3	10
112	Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst. Nanoscale Research Letters, 2015, 10, 68.	3.1	10
113	Impact of Metal Nanocrystal Size and Distribution on Resistive Switching Parameters of Oxide-Based Resistive Random Access Memories. IEEE Transactions on Electron Devices, 2018, 65, 4674-4678.	1.6	10
114	Growth Mechanism, Ambient Stability, and Charge Trapping Ability of Ti-Based Maleic Acid Hybrid Films by Molecular Layer Deposition. Langmuir, 2019, 35, 3020-3030.	1.6	10
115	Co–Pt bimetallic nanoparticles with tunable magnetic and electrocatalytic properties prepared by atomic layer deposition. Chemical Communications, 2020, 56, 8675-8678.	2.2	10
116	Structural phase transition due to La substitution in Bi ₄ Ti ₃ O ₁₂ . Phase Transitions, 2009, 82, 146-155.	0.6	9
117	Ferroelectric modulation on resonant tunneling through perovskite double-barriers. Applied Physics Letters, 2014, 104, .	1.5	9
118	Band-alignment dominated retention behaviors in high-k composite charge-trapping memory devices. Applied Physics Letters, 2019, 114, .	1.5	9
119	Conformal porous carbon coating on carbon fiber cloth/NiS ₂ composites by molecular layer deposition for durable supercapacitor electrodes. Journal of Materials Research, 2020, 35, 738-746.	1.2	9
120	Titanicone-derived TiO ₂ quantum dot@carbon encapsulated ZnO nanorod anodes for stable lithium storage. Dalton Transactions, 2020, 49, 10866-10873.	1.6	9
121	One-step facile preparation of zinc-based hydroquinone hybrid nanoporous thin films by molecular layer deposition. Applied Physics Letters, 2020, 117, 031601.	1.5	9
122	Room temperature aging behavior of thermally imprinted Pt/SrBi2Ta2O9/Pt ferroelectric thin film capacitors. Journal of Applied Physics, 2001, 90, 4130-4133.	1.1	8
123	Structure and tuning properties of sol–gel-derived Pb0.4Sr0.6Zr0.52Ti0.48O3 (PSZT) thin films. Journal Physics D: Applied Physics, 2007, 40, 3793-3797.	1.3	8
124	First-Principles Study on Electronic Structure of Gd-Doped HfO ₂ High k Gate Dielectrics. Integrated Ferroelectrics, 2012, 134, 3-9.	0.3	8
125	Monolayer FePt nanocrystal self-assembly embedded into atomic-layer-deposited Al2O3 films for nonvolatile memory applications. Journal of Alloys and Compounds, 2014, 588, 103-107.	2.8	8
126	Interfacial, Electrical, and Band Alignment Characteristics of HfO2/Ge Stacks with In Situ-Formed SiO2 Interlayer by Plasma-Enhanced Atomic Layer Deposition. Nanoscale Research Letters, 2017, 12, 370.	3.1	8

#	Article	IF	CITATIONS
127	High-Performance MIM Capacitors Using Zr-Sn-Ti-O Dielectrics Derived from Atomic Layer Deposition. IEEE Electron Device Letters, 2019, 40, 682-685.	2.2	8
128	Band alignment and interfacial properties of atomic layer deposited (TiO2) x (Al2O3)1â^'x gate dielectrics on Ge. Applied Physics A: Materials Science and Processing, 2011, 105, 763-767.	1.1	7
129	Synthesis and characterization of FePt nanoparticles and FePt nanoparticle/SiO2-matrix composite films. Journal of Sol-Gel Science and Technology, 2012, 64, 269-275.	1.1	7
130	HfO2/GeO N /Ge gate stacks with sub-nanometer capacitance equivalent thickness and low interface trap density by in situ NH3 plasma pretreatment. Applied Surface Science, 2015, 325, 13-19.	3.1	7
131	Highâ€Performance Organic Fieldâ€Effect Transistor with Matching Energyâ€Band Alignment between Organic Semiconductor and the Chargeâ€Trapping Dielectric. Advanced Electronic Materials, 2019, 5, 1800865.	2.6	7
132	α-Fe ₂ O ₃ /Ag/CdS ternary heterojunction photoanode for efficient solar water oxidation. Catalysis Science and Technology, 2021, 11, 5859-5867.	2.1	7
133	Flexible Al-Ti-Zn-O MIM capacitors fabricated by room temperature atomic layer deposition and their electrical performances. Journal of Alloys and Compounds, 2021, 870, 159391.	2.8	7
134	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 27, 263-265.	1.1	6
135	Effects of processing on all-optical poling characteristics of guest-host azo-dye polymer thin films. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1114-1122.	0.8	6
136	Polarization offsets of compositionally graded Nd-substituted Bi4Ti3O12 ferroelectric thin films. Applied Physics Letters, 2008, 93, 062904.	1.5	6
137	Microstructures and impedance studies of Bi3.15Nd0.85Ti3O12 thin films. Applied Physics A: Materials Science and Processing, 2009, 95, 517-521.	1.1	6
138	Effect of surface treatments on interfacial characteristics and band alignments of atomicâ€layerâ€deposited Al ₂ O ₃ films on GaAs substrates. Surface and Interface Analysis, 2011, 43, 734-737.	0.8	6
139	Chemical strain-dependent two-dimensional transport at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi><mml:msub><mml:m interfaces <mml:math< td=""><td>text>AlO<</td><td>/mml:mtext></td></mml:math<></mml:m </mml:msub></mml:mrow></mml:math 	text>AlO<	/mml:mtext>

#	Article	IF	Citations
145	Fabrication and magnetic properties of FePt nanoparticle assemblies embedded in MgO-matrix systems. Journal of Sol-Gel Science and Technology, 2014, 71, 283-290.	1.1	5
146	Core–shell MWCNTs@ZnS composite prepared by atomic layer deposition for high-performance lithium-ion batteries anode. Journal of Materials Research, 2021, 36, 1262-1271.	1.2	5
147	Fabrication of Fine Mullite Powders by Heterogeneous Nucleation and Growth Processing. Journal of the American Ceramic Society, 2004, 87, 520-522.	1.9	4
148	Fabrication and electrical characteristics of ultrathin (HfO2)x(SiO2)1â^x films by surface sol–gel method and reaction-anneal treatment. Microelectronic Engineering, 2010, 87, 1756-1759.	1.1	4
149	Fabrication and magnetic properties of FePt/Al2O3 composite film by atomic-layer-deposition. Journal of Magnetism and Magnetic Materials, 2013, 343, 1-5.	1.0	4
150	Ti–Al–O nanocrystal charge trapping memory cells fabricated by atomic layer deposition. Thin Solid Films, 2014, 563, 6-9.	0.8	4
151	The roles of the dielectric constant and the relative level of conduction band of high-k composite with Si in improving the memory performance of charge-trapping memory devices. AIP Advances, 2014, 4, 117110.	0.6	4
152	Improved thermal stability and electrical properties of atomic layer deposited HfO2/AlN high-k gate dielectric stacks on GaAs. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	4
153	Interfacial catalysis in and initial reaction mechanism of Al ₂ O ₃ films fabricated by atomic layer deposition using non-hydrolytic sol–gel chemistry. Physical Chemistry Chemical Physics, 2016, 18, 31223-31229.	1.3	4
154	Atomic Layer-Deposited Al2O3 Interlayer for Improved Tribological and Anti-corrosion Properties of TiN Hard Coating on 316L Stainless Steel. Journal of Materials Engineering and Performance, 2019, 28, 7058-7067.	1.2	4
155	Design and self-catalytic mechanism of aluminum precursors bearing amino ligands for Al2S3 atomic layer deposition. Applied Surface Science, 2022, 595, 153516.	3.1	4
156	Characterization of SrBi2Ta2O9 films prepared by metalorganic decomposition using rapid thermal annealing. Integrated Ferroelectrics, 2001, 33, 253-259.	0.3	3
157	Fabrication of composite particles with core-shell structures by a novel processing. Journal of Materials Science, 2002, 37, 3377-3379.	1.7	3
158	Characteristics of SrBi2Ta2O9 ferroelectric films in an in situ applied low electric field prepared by metalorganic decomposition. Solid State Communications, 2003, 125, 469-473.	0.9	3
159	SYNTHESIS AND CHARACTERIZATION OF FERROELECTRIC NANOCRYSTAL POWDERS OF SrBi2Ta2O9 BY A POLYMERIZABLE COMPLEX METHOD. International Journal of Modern Physics B, 2005, 19, 2514-2519.	1.0	3
160	PREPARATION AND CHARACTERIZATION OF PLZT FERROELECTRIC INVERSE OPAL. International Journal of Modern Physics B, 2005, 19, 2769-2774.	1.0	3
161	Effect of an in-situ applied electric field on growth of Bi4Ti3O12 films by sol–gel. Applied Surface Science, 2006, 253, 1154-1159.	3.1	3
162	Redox-controlled memristive switching in the junctions employing Ti reactive electrodes. AIP Advances, 2011, 1, 032141.	0.6	3

#	Article	IF	CITATIONS
163	The combination self-cleaning effect of trimethylaluminium and tetrakis (dimethyl-amino) hafnium pretreatments on GaAs. Applied Surface Science, 2012, 263, 497-501.	3.1	3
164	Preparation and magnetic properties of L10–FePt/TiO2 nanocomposite thin films. Journal of Alloys and Compounds, 2012, 542, 128-131.	2.8	3
165	Realizing the enhanced cyclability of a cactus-like NiCo2O4 nanocrystal anode fabricated by molecular layer deposition. Dalton Transactions, 2021, 50, 511-519.	1.6	3
166	Role of atomic layer deposited TiOxNy interlayer in tribological and corrosion properties of CrN coating. Surface and Coatings Technology, 2022, 429, 127981.	2.2	3
167	Ferroelectric SrBi2Ta2O9-SiO2 Glass-Ceramic Thin Films in Metal/Ferroelectric/Insulator/Semiconductor Structures. Physica Status Solidi A, 2002, 193, R4-R6.	1.7	2
168	WELL-BEHAVED METAL-OXIDE-SEMICONDUCTOR CAPACITOR CHARACTERISTICS OF ZIRCONIUM OXIDE FILMS FABRICATED BY SURFACE SOL-GEL PROCESS. Integrated Ferroelectrics, 2005, 74, 3-11.	0.3	2
169	STRUCTURE AND PROPERTIES OF BARIUM STRONTIUM TITANATE NANOPARTICLES SYNTHESIZED BY A HYDROTHERMAL METHOD. Integrated Ferroelectrics, 2006, 78, 289-297.	0.3	2
170	PREPARATION AND CHARACTERIZATION OF POLED NANOCRYSTALS AND POLYMER COMPOSITE SrBi2Ta2O9/PC FILMS. Integrated Ferroelectrics, 2007, 87, 59-66.	0.3	2
171	Preparation and characterization of Pb0.56Sr0.44Zr0.52Ti0.48O3 inverse opal. Journal of Sol-Gel Science and Technology, 2008, 45, 315-318.	1.1	2
172	CHEMICAL VAPOR DEPOSITION OF Zr _x Hf _{1-x} O ₂ THIN FILMS USING ANHYDROUS MIXED-METAL NITRATES PRECURSORS. Integrated Ferroelectrics, 2008, 97, 93-102.	0.3	2
173	Polarization offset of homogeneous Bi3.15Nd0.85Ti3O12 ferroelectric thin films. Journal of Applied Physics, 2008, 104, .	1.1	2
174	Effect of annealing on interfacial and band alignment characteristics of HfO2/SiO2 gate stacks on Ge substrates. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 010602.	0.6	2
175	Characterization of HfO[sub 2]â^•Al[sub 2]O[sub 3] gate dielectric nanometer-stacks grown by atomic layer deposition on Ge substrates., 2012,,.		2
176	HfxZr1â^xO2 films chemical vapor deposited from a single source precursor of anhydrous HfxZr1â^x(NO3)4. Journal of Crystal Growth, 2012, 346, 12-16.	0.7	2
177	Magnetic and transport characteristics of long-period [(LaMnO3)n/(SrMnO3)n]m (n ≥ 3) superlattice Journal of Applied Physics, 2012, 112, 103917.	²⁸ 1.1	2
178	Interface modulation and resistive switching evolution in Pt/NiO x /Al2O3/n+–Si structure. Applied Physics A: Materials Science and Processing, 2015, 118, 1365-1370.	1.1	2
179	Impacts of postannealing ambient atmospheres on Pt/SrBi _{2.2} Ta ₂ O ₉ /Pt capacitors. Journal of Materials Research, 2001, 16, 3526-3535.	1.2	1
180	Effect of In-Situ Applied Electric Field on Structure and Ferroelectric Properties of SrBi 2 Ta 2 O 9 Films. Integrated Ferroelectrics, 2002, 47, 153-158.	0.3	1

#	Article	IF	CITATIONS
181	Structural and Electrical Properties of Bi 3.25 La 0.75 Ti 3 O 12 and Bi 3.25 Pr 0.75 Ti 3 O 12 Thin Films for Memory Applications. Integrated Ferroelectrics, 2002, 45, 177-182.	0.3	1
182	The roles of B-site ions in lead strontium zirconate titanate thin films for electrically tunable device applications. Thin Solid Films, 2010, 518, 3929-3932.	0.8	1
183	Effects of Postannealing Temperature on the Band Alignments and Interfacial Properties of Atomic Layer Deposited Al2O3 on Ge Substrates. Integrated Ferroelectrics, 2012, 134, 16-21.	0.3	1
184	Cobaltâ€Doping Stabilized Active and Durable Subâ€2Ânm Pt Nanoclusters for Lowâ€Pt‣oading PEMFC Cathode (Adv. Energy Mater. 13/2022). Advanced Energy Materials, 2022, 12, .	10.2	1
185	Growth behavior of Ir metal by atomic layer deposition in nanopores of anodic aluminum oxide. Dalton Transactions, 0, , .	1.6	1
186	Atomic-scale microstructures of SrBi2Ta2O9 (SBT) ferroelectric thin films prepared by MOD and PLD for ferams applications. Integrated Ferroelectrics, 2000, 31, 195-203.	0.3	0
187	Growth and characterization of SrBi2Ta2O9thin films prepared by rapid thermal annealing. Ferroelectrics, 2001, 263, 303-308.	0.3	0
188	Top electrode postanneal effect on ferroelectric properties of Pt/SrBi2Ta2O9/Pt capacitors. Ferroelectrics, 2001, 259, 339-344.	0.3	0
189	Preparation and properties of Bi4-xLaxTi3O12thin films by chemical solution deposition. Ferroelectrics, 2001, 260, 27-32.	0.3	0
190	High-resolution electron microscopy investigation on stacking faults in SrBi2Ta2O9ferroelectric thin films prepared by metalorganic deposition. Ferroelectrics, 2001, 251, 139-146.	0.3	0
191	Chemical Vapor Deposition of ZrxTi1-xO and HfxTi1-xO Thin Films Using the Composite Anhydrous Nitrate Precursors. Materials Research Society Symposia Proceedings, 2006, 917, 1.	0.1	0
192	Transmission Electron Microscopy Observations on the Interfacial Structures of the Pt/SrBi2Ta2O9/Pt Thin-Film Capacitors Prepared by Metallo-Organic Decomposition. Journal of the American Ceramic Society, 2008, 91, 979-985.	1.9	0
193	PHASE EVOLUTION AND MAGNETIC PROPERTIES OF FEPT-PTTE2 NANORODS. International Journal of Modern Physics B, 2009, 23, 3573-3578.	1.0	0
194	Properties of Hf <inf>0.7</inf> Zr <inf>0.3</inf> O <inf>2</inf> thin films chemical vapor deposited using a single-source precursor of anhydrous		