Fuminori Tokunaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8917300/publications.pdf

Version: 2024-02-01

93 papers

7,621 citations

71102 41 h-index 85 g-index

98 all docs 98 docs citations 98 times ranked 6681 citing authors

#	Article	IF	CITATIONS
1	Linear ubiquitination in immune and neurodegenerative diseases, and beyond. Biochemical Society Transactions, 2022, 50, 799-811.	3.4	8
2	Capacity of extracellular globins to reduce liver fibrosis via scavenging reactive oxygen species and promoting MMP-1 secretion. Redox Biology, 2022, 52, 102286.	9.0	3
3	The synchronized gene expression of retrotransposons and type I interferon in dermatomyositis. Journal of the American Academy of Dermatology, 2021, 84, 1103-1105.	1.2	4
4	Th2 cells and macrophages cooperatively induce allergic inflammation through histamine signaling. PLoS ONE, 2021, 16, e0248158.	2.5	22
5	Crosstalk Between NDP52 and LUBAC in Innate Immune Responses, Cell Death, and Xenophagy. Frontiers in Immunology, 2021, 12, 635475.	4.8	5
6	Th2 cell-derived histamine is involved in nasal Th2 infiltration in mice. Inflammation Research, 2021, 70, 539-541.	4.0	1
7	Hexa Histidine–Tagged Recombinant Human Cytoglobin Deactivates Hepatic Stellate Cells and Inhibits Liver Fibrosis by Scavenging Reactive Oxygen Species. Hepatology, 2021, 73, 2527-2545.	7.3	17
8	MIND bomb 2 prevents RIPK1 kinase activity-dependent and -independent apoptosis through ubiquitylation of cFLIPL. Communications Biology, 2021, 4, 80.	4.4	13
9	Coordination of retrotransposons and type I interferon with distinct interferon pathways in dermatomyositis, systemic lupus erythematosus and autoimmune blistering disease. Scientific Reports, 2021, 11, 23146.	3.3	10
10	Interplay between protein acetylation and ubiquitination controls MCL1 protein stability. Cell Reports, 2021, 37, 109988.	6.4	20
11	Subquinocin, a small molecule inhibitor of CYLD and USP-family deubiquitinating enzymes, promotes NF-κB signaling. Biochemical and Biophysical Research Communications, 2020, 524, 1-7.	2.1	20
12	Cellular and Mathematical Analyses of LUBAC Involvement in T Cell Receptor-Mediated NF-κB Activation Pathway. Frontiers in Immunology, 2020, 11, 601926.	4.8	8
13	Linear Ubiquitin Code: Its Writer, Erasers, Decoders, Inhibitors, and Implications in Disorders. International Journal of Molecular Sciences, 2020, 21, 3381.	4.1	37
14	A Human DUB Protein Array for Clarification of Linkage Specificity of Polyubiquitin Chain and Application to Evaluation of Its Inhibitors. Biomedicines, 2020, 8, 152.	3.2	17
15	Linear Polyubiquitin Chain Modification of TDP-43-Positive Neuronal Cytoplasmic Inclusions in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2020, 79, 256-265.	1.7	14
16	Molecular bases for HOIPINs-mediated inhibition of LUBAC and innate immune responses. Communications Biology, 2020, 3, 163.	4.4	38
17	The E3 ubiquitin ligase MIB2 enhances inflammation by degrading the deubiquitinating enzyme CYLD. Journal of Biological Chemistry, 2019, 294, 14135-14148.	3.4	21
18	Identification of linear polyubiquitin chain immunoreactivity in tau pathology of Alzheimer's disease. Neuroscience Letters, 2019, 703, 53-57.	2.1	18

#	Article	IF	CITATIONS
19	Small-molecule inhibitors of linear ubiquitin chain assembly complex (LUBAC), HOIPINs, suppress NF-κB signaling. Biochemical and Biophysical Research Communications, 2019, 509, 700-706.	2.1	43
20	In-frame Val 216 -Ser 217 deletion of KIT in mild piebaldism causes aberrant secretion and SCF response. Journal of Dermatological Science, 2018, 91, 35-42.	1.9	3
21	Generalized verrucosis caused by various human papillomaviruses in a patient with <scp>GATA</scp> 2 deficiency. Journal of Dermatology, 2018, 45, e108-e109.	1.2	10
22	Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nature Communications, 2018, 9, 4424.	12.8	108
23	High-Throughput Screening for Linear Ubiquitin Chain Assembly Complex (LUBAC) Selective Inhibitors Using Homogenous Time-Resolved Fluorescence (HTRF)-Based Assay System. SLAS Discovery, 2018, 23, 1018-1029.	2.7	27
24	Generation of Rat Monoclonal Antibodies Against a Deubiquitinase, Ovarian Tumor Domain-Containing Protein 1. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37, 180-184.	1.6	2
25	Generation of Rat Monoclonal Antibodies Specific for DZIP3. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37, 153-157.	1.6	1
26	Decreased linear ubiquitination of NEMO and FADD on apoptosis with caspase-mediated cleavage of HOIP. Biochemical and Biophysical Research Communications, 2017, 485, 152-159.	2.1	29
27	Reduced SHARPIN and LUBAC Formation May Contribute to CCl4- or Acetaminophen-Induced Liver Cirrhosis in Mice. International Journal of Molecular Sciences, 2017, 18, 326.	4.1	8
28	HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains. PLoS Pathogens, 2017, 13, e1006162.	4.7	30
29	Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nature Communications, 2016, 7, 12547.	12.8	109
30	Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide. Scientific Reports, 2016, 6, 34756.	3.3	43
31	The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3. PLoS ONE, 2015, 10, e0140366.	2.5	13
32	LUBAC Formation Is Impaired in the Livers of Mice with MCD-Dependent Nonalcoholic Steatohepatitis. Mediators of Inflammation, 2015, 2015, 1-10.	3.0	20
33	Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nature Structural and Molecular Biology, 2015, 22, 222-229.	8.2	105
34	An Autosomal Recessive Mutation of DSG4 Causes Monilethrix through the ER Stress Response. Journal of Investigative Dermatology, 2015, 135, 1253-1260.	0.7	16
35	Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. Journal of Cell Biology, 2013, 203, 115-128.	5.2	242
36	Linear ubiquitination-mediated NF-ÂB regulation and its related disorders. Journal of Biochemistry, 2013, 154, 313-323.	1.7	73

#	Article	IF	CITATIONS
37	Structural and Functional Analyses of DNA-Sensing and Immune Activation by Human cGAS. PLoS ONE, 2013, 8, e76983.	2.5	54
38	Activation of nuclear factor-kappa B by linear ubiquitin chain assembly complex contributes to lung metastasis of osteosarcoma cells. International Journal of Oncology, 2012, 40, 409-17.	3.3	19
39	Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO Journal, 2012, 31, 3856-3870.	7.8	179
40	Analysis of Nuclear Factor-l̂ºB (NF-l̂ºB) Essential Modulator (NEMO) Binding to Linear and Lysine-linked Ubiquitin Chains and Its Role in the Activation of NF-l̂ºB. Journal of Biological Chemistry, 2012, 287, 23626-23634.	3.4	86
41	Linear ubiquitination: A novel NF-κB regulatory mechanism for inflammatory and immune responses by the LUBAC ubiquitin ligase complex [Review]. Endocrine Journal, 2012, 59, 641-652.	1.6	44
42	A nonâ€canonical UBA–UBL interaction forms the linearâ€ubiquitinâ€chain assembly complex. EMBO Reports, 2012, 13, 462-468.	4.5	52
43	LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes and Infection, 2012, 14, 563-572.	1.9	76
44	Backbone and side chain 1H, 13C, and 15N assignments of the ubiquitin-like domain of human HOIL-1L, an essential component of linear ubiquitin chain assembly complex. Biomolecular NMR Assignments, 2012, 6, 177-180.	0.8	7
45	Linear Ubiquitin Assembly Complex Negatively Regulates RIG-I- and TRIM25-Mediated Type I Interferon Induction. Molecular Cell, 2011, 41, 354-365.	9.7	189
46	SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature, 2011, 471, 637-641.	27.8	655
47	SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature, 2011, 471, 633-636.	27.8	557
48	Crystallization and preliminary X-ray characterization of the Skp1–Fbg3 complex. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 95-98.	0.7	2
49	Linear polyubiquitination: a new regulator of NFâ€PB activation. EMBO Reports, 2009, 10, 706-713.	4.5	202
50	Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biology, 2009, 11, 123-132.	10.3	870
51	Gp78 Cooperates with RMA1 in Endoplasmic Reticulum-associated Degradation of CFTRΔF508. Molecular Biology of the Cell, 2008, 19, 1328-1336.	2.1	212
52	The COP9/Signalosome Increases the Efficiency of von Hippel-Lindau Protein Ubiquitin Ligase-mediated Hypoxia-inducible Factor-α Ubiquitination. Journal of Biological Chemistry, 2008, 283, 16622-16631.	3.4	18
53	Mutual regulation of conventional protein kinase C and a ubiquitin ligase complex. Biochemical and Biophysical Research Communications, 2006, 351, 340-347.	2.1	45
54	Characterization of endoplasmic reticulum-associated degradation of a protein S mutant identified in a family of quantitative protein S deficiency. Thrombosis Research, 2006, 117, 323-331.	1.7	11

#	Article	IF	Citations
55	A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO Journal, 2006, 25, 4877-4887.	7.8	663
56	Involvement of Heme Regulatory Motif in Heme-Mediated Ubiquitination and Degradation of IRP2. Molecular Cell, 2005, 19, 171-181.	9.7	135
57	Identification of the ubiquitin–protein ligase that recognizes oxidized IRP2. Nature Cell Biology, 2003, 5, 336-340.	10.3	176
58	N-Linked oligosaccharide processing, but not association with calnexin/calreticulin is highly correlated with endoplasmic reticulum-associated degradation of antithrombin Glu313-deleted mutant. Archives of Biochemistry and Biophysics, 2003, 411, 235-242.	3.0	15
59	Fbs2 Is a New Member of the E3 Ubiquitin Ligase Family That Recognizes Sugar Chains. Journal of Biological Chemistry, 2003, 278, 43877-43884.	3.4	156
60	Proline-rich Cell Surface Antigens of Horseshoe Crab Hemocytes Are Substrates for Protein Cross-linking with a Clotting Protein Coagulin. Journal of Biological Chemistry, 2002, 277, 40084-40090.	3.4	51
61	Endoplasmic Reticulum (ER)-associated Degradation of Misfolded N-Linked Glycoproteins Is Suppressed upon Inhibition of ER Mannosidase I. Journal of Biological Chemistry, 2000, 275, 40757-40764.	3.4	114
62	Intracellular degradation of secretion defect-type mutants of antithrombin is inhibited by proteasomal inhibitors. FEBS Letters, 1997, 412, 65-69.	2.8	23
63	Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine protease homologue with antimicrobial activity. FEBS Letters, 1996, 398, 146-150.	2.8	71
64	Cellular Basis for Protein C Deficiency Caused by a Single Amino Acid Substitution at Argl5 in the Â-Carboxyglutamic Acid Domain. Journal of Biochemistry, 1996, 120, 360-368.	1.7	17
65	Warfarin Causes the Degradation of Protein C Precursor in the Endoplasmic Reticulum. Biochemistry, 1995, 34, 1163-1170.	2.5	47
66	Molecular cloning of two types of cDNA encoding subunit RC6-I of rat proteasomes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1264, 45-52.	2.4	16
67	Amino Acid Sequence of Porcine Antithrombin III1. Journal of Biochemistry, 1994, 116, 1164-1170.	1.7	8
68	cDNA cloning of rat proteasome subunit RC7-I, a homologue of yeast PRE1 essential for chymotrypsin-like activity. FEBS Letters, 1993, 332, 52-56.	2.8	12
69	cDNA cloning of rat proteasome subunit RC10-II, assumed to be responsible for trypsin-like catalytic activity. FEBS Letters, 1993, 336, 462-466.	2.8	13
70	Molecular Characterization of the "26S" Proteasome Complex from Rat Liver. Journal of Structural Biology, 1993, 111, 200-211.	2.8	142
71	[20] Limulus clotting factor C: Lipopolysaccharide-sensitive serine protease zymogen. Methods in Enzymology, 1993, 223, 336-345.	1.0	15
72	[25] Horseshoe crab transglutaminase. Methods in Enzymology, 1993, 223, 378-388.	1.0	9

#	Article	IF	Citations
73	Identification of one base deletion in exon IX of the protein C gene that causes a type I deficiency. Thrombosis Research, 1992, 68, 417-423.	1.7	3
74	Molecular mechanism of hemolymph clotting system in Limulus. Thrombosis Research, 1992, 68, 1-32.	1.7	143
7 5	cDNA cloning of rat proteasome subunit RC1, a homologue of RING10 located in the human MHC class II region. FEBS Letters, 1992, 301, 65-68.	2.8	25
76	Preparation and Properties of Monoclonal Antibodies against Lipopolysaccharide-Sensitive Serine Protease Zymogen, Factor C, from Horseshoe Crab (Tachypleus tridentatus) Hemocytes1. Journal of Biochemistry, 1992, 112, 476-481.	1.7	22
77	Direct Virus Inactivation of Tachyplesin I and Its Isopeptides from Horseshoe Crab Hemocytes. Chemotherapy, 1991, 37, 327-334.	1.6	89
78	Further Studies on Lipopolysaccharide-Sensitive Serine Protease Zymogen (Factor C): Its Isolation from Limulus polyphemus Hemocytes and Identification as an Intracellular Zymogen Activated by α-Chymotrypsin, Not by Trypsin1. Journal of Biochemistry, 1991, 109, 150-157.	1.7	33
79	Isolation and characterization of a thermolabile β-2 macroglycoprotein (†thermolabile substance' or) Tj erythematosus. BBA - Proteins and Proteomics, 1991, 1078, 369-376.	ETQq1 1 0.7 2.1	84314 rgBT 58
80	Presequence Does Not Prevent Folding of a Purified Mitochondrial Precursor Protein and Is Essential for Association with a Reticulocyte Cytosolic Factor(s)1. Journal of Biochemistry, 1990, 108, 207-214.	1.7	29
81	Purification and Amino Acid Sequence of Basic Protein II, a Lysine-49-Phospholipase A2 with Low Activity, from Trimeresurus flavoviridis Venom1. Journal of Biochemistry, 1990, 107, 400-408.	1.7	86
82	Molecular cloning of cDNA for proteasomes from rat liver: primary structure of component C3 with a possible tyrosine phosphorylation site. Biochemistry, 1990, 29, 3777-3785.	2.5	79
83	cDNA cloning and sequencing of component C9 of proteasomes from rat hepatoma cells. FEBS Letters, 1990, 264, 279-282.	2.8	60
84	cDNA cloning and sequencing of component C5 of proteasomes from rat hepatoma cells. FEBS Letters, 1990, 264, 91-94.	2.8	51
85	The NH2 -terminal residues of rat liver proteasome (multicatalytic proteinase complex) subunits, C2, C3 and C8, are N α-acetylated. FEBS Letters, 1990, 263, 373-375.	2.8	28
86	cDNA cloning and sequencing of component C8 of proteasomes from rat hepatoma cells. Biochemical and Biophysical Research Communications, 1990, 171, 676-683.	2.1	49
87	Primary Structure of Hemorrhagic Protein, HR2a, Isolated from the Venom of Trimeresurus flavoviridis1. Journal of Biochemistry, 1989, 105, 847-853.	1.7	100
88	Molecular cloning of cDNA for proteasomes (multicatalytic proteinase complexes) from rat liver: primary structure of the largest component (C2). Biochemistry, 1989, 28, 7332-7340.	2.5	90
89	Antimicrobial Peptides, Isolated from Horseshoe Crab Hemocytes, Tachyplesin II, and Polyphemusins I and II: Chemical Structures and Biological Activity1. Journal of Biochemistry, 1989, 106, 663-668.	1.7	303
90	Intracellular serine-protease zymogen, factor C, from horseshoe crab hemocytes. Its activation by synthetic lipid A analogues and acidic phospholipids. FEBS Journal, 1988, 176, 89-94.	0.2	62

#	Article	IF	CITATIONS
91	Interaction between Lipopolysaccharide and Intracellular Serine Protease Zymogen, Factor C, from Horseshoe Crab (Tachypleus tridentatus) Hemocytes1. Journal of Biochemistry, 1988, 103, 370-374.	1.7	55
92	Purification and Amino Acid Sequence of Kunitz-Type Protease Inhibitor Found in the Hemocytes of Horseshoe Crab (Tachypleus tridentatus) 12. Journal of Biochemistry, 1987, 101, 1297-1306.	1.7	37
93	Primary Structure of Anti-Lipopolysaccharide Factor from American Horseshoe Crab, Limulus polyphemus1. Journal of Biochemistry, 1987, 101, 1321-1330.	1.7	100