
Clara Nahmias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/891660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Le transport mitochondrial. Medecine/Sciences, 2022, 38, 585-593.	0.2	1
2	Predictive biomarkers for personalized medicine in breast cancer. Cancer Letters, 2022, 545, 215828.	7.2	14
3	Reciprocal regulation of Aurora kinase A and ATIP3 in the control of metaphase spindle length. Cellular and Molecular Life Sciences, 2021, 78, 1765-1779.	5.4	9
4	Predicting and Overcoming Taxane Chemoresistance. Trends in Molecular Medicine, 2021, 27, 138-151.	6.7	16
5	Microtubule-Associated Protein ATIP3, an Emerging Target for Personalized Medicine in Breast Cancer. Cells, 2021, 10, 1080.	4.1	6
6	Mitochondrial Metabolism in Carcinogenesis and Cancer Therapy. Cancers, 2021, 13, 3311.	3.7	28
7	Microtubule-associated tumor suppressors as prognostic biomarkers in breast cancer. Breast Cancer Research and Treatment, 2020, 179, 267-273.	2.5	12
8	ATIP3 deficiency facilitates intracellular accumulation of paclitaxel to reduce cancer cell migration and lymph node metastasis in breast cancer patients. Scientific Reports, 2020, 10, 13217.	3.3	9
9	From tumorigenesis to cell death: the aneuploidy paradox. Molecular and Cellular Oncology, 2020, 7, 1709390.	0.7	5
10	Activation of the Kinin B1 Receptor by Its Agonist Reduces Melanoma Metastasis by Playing a Dual Effect on Tumor Cells and Host Immune Response. Frontiers in Pharmacology, 2019, 10, 1106.	3.5	8
11	Improving breast cancer sensitivity to paclitaxel by increasing aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23691-23697.	7.1	32
12	Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast Cancer Research and Treatment, 2019, 173, 573-583.	2.5	13
13	Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cellular and Molecular Life Sciences, 2017, 74, 2381-2393.	5.4	85
14	Host kinin B1 receptor plays a protective role against melanoma progression. Scientific Reports, 2016, 6, 22078.	3.3	12
15	The metastatic microenvironment: Claudinâ€I suppresses the malignant phenotype of melanoma brain metastasis. International Journal of Cancer, 2015, 136, 1296-1307.	5.1	44
16	Astrocytes facilitate melanoma brain metastasis via secretion ofÂ <scp>IL</scp> â€23. Journal of Pathology, 2015, 236, 116-127.	4.5	95
17	G-protein coupled receptors of the renin-angiotensin system: new targets against breast cancer?. Frontiers in Pharmacology, 2015, 6, 24.	3.5	33
18	Vemurafenib resistance selects for highly malignant brain and lung-metastasizing melanoma cells. Cancer Letters, 2015, 361, 86-96.	7.2	45

CLARA NAHMIAS

#	Article	IF	CITATIONS
19	The AT2 Receptor and Interacting Proteins (ATIPs) in Cancer. , 2015, , 103-107.		1
20	Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3. Oncotarget, 2015, 6, 43557-43570.	1.8	19
21	IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14794-14799.	7.1	22
22	AT2 Receptor-Interacting Proteins ATIPs in the Brain. International Journal of Hypertension, 2013, 2013, 1-6.	1.3	8
23	ATIP3, a Novel Prognostic Marker of Breast Cancer Patient Survival, Limits Cancer Cell Migration and Slows Metastatic Progression by Regulating Microtubule Dynamics. Cancer Research, 2013, 73, 2905-2915.	0.9	56
24	A Novel Cellular Model to Study Angiotensin II AT2 Receptor Function in Breast Cancer Cells. International Journal of Peptides, 2012, 2012, 1-6.	0.7	6
25	Angiotensin II Facilitates Breast Cancer Cell Migration and Metastasis. PLoS ONE, 2012, 7, e35667.	2.5	84
26	The metastatic microenvironment: Brainâ€residing melanoma metastasis and dormant micrometastasis. International Journal of Cancer, 2012, 131, 1071-1082.	5.1	74
27	The metastatic microenvironment: Brainâ€derived soluble factors alter the malignant phenotype of cutaneous and brainâ€metastasizing melanoma cells. International Journal of Cancer, 2012, 131, 2509-2518.	5.1	28
28	Invading Basement Membrane Matrix Is Sufficient for MDA-MB-231 Breast Cancer Cells to Develop a Stable In Vivo Metastatic Phenotype. PLoS ONE, 2011, 6, e23334.	2.5	23
29	Pressor and Renal Hemodynamic Effects of the Novel Angiotensin A Peptide Are Angiotensin II Type 1A Receptor Dependent. Hypertension, 2011, 57, 956-964.	2.7	42
30	An ATIPical family of angiotensin II AT2 receptor-interacting proteins. Trends in Endocrinology and Metabolism, 2010, 21, 684-690.	7.1	62
31	Attenuation of Cuff-Induced Neointimal Formation by Overexpression of Angiotensin II Type 2 Receptor-Interacting Protein 1. Hypertension, 2009, 53, 688-693.	2.7	35
32	8p22 MTUS1 Gene Product ATIP3 Is a Novel Anti-Mitotic Protein Underexpressed in Invasive Breast Carcinoma of Poor Prognosis. PLoS ONE, 2009, 4, e7239.	2.5	79
33	Involvement of câ€Src tyrosine kinase in SHPâ€1 phosphatase activation by Ang II AT ₂ receptors in rat fetal tissues. Journal of Cellular Biochemistry, 2008, 105, 703-711.	2.6	25
34	Angiotensin II-Induced Neural Differentiation via Angiotensin II Type 2 (AT2) Receptor-MMS2 Cascade Involving Interaction between AT2Receptor-Interacting Protein and Src Homology 2 Domain-Containing Protein-Tyrosine Phosphatase 1. Molecular Endocrinology, 2007, 21, 499-511.	3.7	88
35	Angiotensin receptors: a new role in cancer?. Trends in Endocrinology and Metabolism, 2005, 16, 293-299.	7.1	384
36	Regulation of Inhibitory Protein-κB and Monocyte Chemoattractant Protein-1 by Angiotensin II Type 2 Receptor-Activated Src Homology Protein Tyrosine Phosphatase-1 in Fetal Vascular Smooth Muscle Cells. Molecular Endocrinology, 2004, 18, 666-678.	3.7	63

CLARA NAHMIAS

#	Article	IF	CITATIONS
37	Regulation of Collagen Synthesis in Mouse Skin Fibroblasts by Distinct Angiotensin II Receptor Subtypes. Endocrinology, 2004, 145, 253-260.	2.8	47
38	Trans-inactivation of Receptor Tyrosine Kinases by Novel Angiotensin II AT2 Receptor-interacting Protein, ATIP. Journal of Biological Chemistry, 2004, 279, 28989-28997.	3.4	159
39	Negative Regulation of β-Catenin Signaling by Tyrosine Phosphatase SHP-1 in Intestinal Epithelial Cells. Journal of Biological Chemistry, 2003, 278, 14274-14283.	3.4	47
40	Angiotensin II Subtype 2 Receptor Activation Inhibits Insulin-Induced Phosphoinositide 3-Kinase and Akt and Induces Apoptosis in PC12W Cells. Molecular Endocrinology, 2002, 16, 2113-2123.	3.7	51
41	Estrogen Activates Phosphatases and Antagonizes Growth-Promoting Effect of Angiotensin II. Hypertension, 2002, 39, 41-45.	2.7	65
42	Effect of Angiotensin II Type 2 Receptor on Tyrosine Kinase Pyk2 and c-Jun NH2-Terminal Kinase via SHP-1 Tyrosine Phosphatase Activity: Evidence from Vascular-Targeted Transgenic Mice of AT2 Receptor. Biochemical and Biophysical Research Communications, 2001, 282, 1085-1091.	2.1	36
43	The iodocyanopindolol and SM-11044 binding protein belongs to the TM9SF multispanning membrane protein superfamily. Gene, 2001, 273, 227-237.	2.2	21
44	Pivotal role of tyrosine phosphatase SHP-1 in AT2 receptor-mediated apoptosis in rat fetal vascular smooth muscle cell. Cardiovascular Research, 2001, 49, 863-871.	3.8	72
45	Angiotensin II Type 2 Receptor Inhibits Epidermal Growth Factor Receptor Transactivation by Increasing Association of SHP-1 Tyrosine Phosphatase. Hypertension, 2001, 38, 367-372.	2.7	43
46	Functional Trans-inactivation of Insulin Receptor Kinase by Growth-Inhibitory Angiotensin II AT ₂ Receptor. Molecular Endocrinology, 2000, 14, 795-804.	3.7	59
47	Signal Transduction from the Angiotensin II AT2 Receptor. Trends in Endocrinology and Metabolism, 2000, 11, 1-6.	7.1	178
48	Functional Trans-inactivation of Insulin Receptor Kinase by Growth-Inhibitory Angiotensin II AT2 Receptor. Molecular Endocrinology, 2000, 14, 795-804.	3.7	20
49	Analysis of Functional Domains of Angiotensin II Type 2 Receptor Involved in Apoptosis. Molecular Endocrinology, 1999, 13, 1051-1060.	3.7	65
50	The Tyrosine Phosphatase SHP-1 Associates with the sst2 Somatostatin Receptor and Is an Essential Component of sst2-mediated Inhibitory Growth Signaling. Journal of Biological Chemistry, 1997, 272, 24448-24454.	3.4	157
51	Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochemical Journal, 1997, 325, 449-454.	3.7	216
52	Molecular and Functional Characterization of Angiotensin II AT2 Receptor in Neuroblastoma N1E-115 Cells. Advances in Experimental Medicine and Biology, 1996, 396, 167-173.	1.6	0
53	Organ culture of rat kidney: A model for angiotensin II receptor ontogenic studies. Kidney International, 1995, 48, 1635-1640.	5.2	8
54	Characterization of a membrane glycoprotein having pharmacological and biochemical properties of an AT2 angiotensin II receptor from human myometrium. FEBS Journal, 1994, 220, 919-926.	0.2	17

#	Article	IF	CITATIONS
55	Poly(Glu60Ala30Tyr10) (GAT)-induced IgG monoclonal antibodies cross-react with various self and non-self antigens through the complementarity determining regions. Comparison with IgM monoclonal polyreactive natural antibodies. European Journal of Immunology, 1990, 20, 2383-2387.	2.9	18
56	Idiotypic cross-reactivity of anti-gat and anti-alprenolol antibodies: An approach to the structural correlates of the pGAT idiotypic specificity. Molecular Immunology, 1989, 26, 827-833.	2.2	0