Gert Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8915946/publications.pdf Version: 2024-02-01

CEDT WERED

#	Article	IF	CITATIONS
1	Helical extension of the neuronal SNARE complex into the membrane. Nature, 2009, 460, 525-528.	27.8	368
2	Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 2019, 10, 1717.	12.8	265
3	A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nature Biotechnology, 2011, 29, 942-947.	17.5	254
4	Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13070-13074.	7.1	253
5	Structural basis for reversible photoswitching in Dronpa. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13005-13009.	7.1	250
6	U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood, 2006, 107, 3229-3234.	1.4	241
7	1.8 Ã bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochemical Journal, 2007, 402, 35-42.	3.7	228
8	Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nature Structural and Molecular Biology, 2010, 17, 403-409.	8.2	145
9	Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO Journal, 2010, 29, 4172-4184.	7.8	115
10	Mechanism-Based Design of Efficient PET Hydrolases. ACS Catalysis, 2022, 12, 3382-3396.	11.2	104
11	Structural and Functional Analysis of the E. coli NusB-S10 Transcription Antitermination Complex. Molecular Cell, 2008, 32, 791-802.	9.7	95
12	Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17418-17423.	7.1	85
13	IFN-α Production by Plasmacytoid Dendritic Cells Stimulated with RNA-Containing Immune Complexes Is Promoted by NK Cells via MIP-1β and LFA-1. Journal of Immunology, 2011, 186, 5085-5094.	0.8	80
14	Molecular Basis of the Light-driven Switching of the Photochromic Fluorescent Protein Padron. Journal of Biological Chemistry, 2010, 285, 14603-14609.	3.4	65
15	Structural basis for λN-dependent processive transcription antitermination. Nature Microbiology, 2017, 2, 17062.	13.3	58
16	B lymphocytes enhance interferonâ€Î± production by plasmacytoid dendritic cells. Arthritis and Rheumatism, 2012, 64, 3409-3419.	6.7	52
17	DYW domain structures imply an unusual regulation principle in plant organellar RNA editing catalysis. Nature Catalysis, 2021, 4, 510-522.	34.4	37
18	Mechanism for Aar2p function as a U5 snRNP assembly factor. Genes and Development, 2011, 25, 1601-1612.	5.9	35

Gert Weber

#	Article	IF	CITATIONS
19	IFN-Â production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases. Human Molecular Genetics, 2015, 24, 3571-3581.	2.9	33
20	Crystal structures of the Arabidopsis thaliana organellar RNA editing factors MORF1 and MORF9. Nucleic Acids Research, 2017, 45, 4915-4928.	14.5	32
21	Structural basis for dual roles of Aar2p in U5 snRNP assembly. Genes and Development, 2013, 27, 525-540.	5.9	26
22	Multiple protein–protein interactions converging on the Prp38 protein during activation of the human spliceosome. Rna, 2016, 22, 265-277.	3.5	24
23	An Unusual RNA Recognition Motif Acts as a Scaffold for Multiple Proteins in the Pre-mRNA Retention and Splicing Complex. Journal of Biological Chemistry, 2008, 283, 32317-32327.	3.4	22
24	Plasmacytoid dendritic cells and RNA-containing immune complexes drive expansion of peripheral B cell subsets with an SLE-like phenotype. PLoS ONE, 2017, 12, e0183946.	2.5	20
25	Crystal Structure of the Pml1p Subunit of the Yeast Precursor mRNA Retention and Splicing Complex. Journal of Molecular Biology, 2009, 385, 531-541.	4.2	19
26	Functional stabilization of an RNA recognition motif by a noncanonical N-terminal expansion. Rna, 2009, 15, 1305-1313.	3.5	16
27	Ectopic Transplastomic Expression of a Synthetic MatK Gene Leads to Cotyledon-Specific Leaf Variegation. Frontiers in Plant Science, 2018, 9, 1453.	3.6	14
28	The intrinsically disordered TSSC4 protein acts as a helicase inhibitor, placeholder and multi-interaction coordinator during snRNP assembly and recycling. Nucleic Acids Research, 2022, 50, 2938-2958.	14.5	11
29	Exploiting the potential of Cyanidiales as a valuable resource for biotechnological applications. Applied Phycology, 2022, 3, 199-210.	1.3	10
30	A human kinase yeast array for the identification of kinases modulating phosphorylationâ€dependent protein–protein interactions. Molecular Systems Biology, 2022, 18, e10820.	7.2	9
31	Crystallization and biochemical characterization of the human spliceosomal Aar2–Prp8 ^{RNaseH} complex. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1421-1428.	0.8	8
32	Yeast cell surface display of bacterial PET hydrolase as a sustainable biocatalyst for the degradation of polyethylene terephthalate. Methods in Enzymology, 2021, 648, 457-477.	1.0	8
33	Molecular principles underlying dual RNA specificity in the Drosophila SNF protein. Nature Communications, 2018, 9, 2220.	12.8	7
34	A multi-factor trafficking site on the spliceosome remodeling enzyme BRR2 recruits C9ORF78 to regulate alternative splicing. Nature Communications, 2022, 13, 1132.	12.8	7
35	Structural analysis of PET-degrading enzymes PETase and MHETase from Ideonella sakaiensis. Methods in Enzymology, 2021, 648, 337-356.	1.0	4
36	Preface. Methods in Enzymology, 2021, 648, xix-xxii.	1.0	0