
Cheng-Hsuan Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8915839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myxoid glioneuronal tumor, <i>PDGFRA</i> p.K385Lâ€mutant, arising in midbrain tectum with multifocal CSF dissemination. Brain Pathology, 2022, 32, e13008.	4.1	6
2	Intracranial mesenchymal tumors with FETâ€CREB fusion are composed of at least two epigenetic subgroups distinct from meningioma and extracranial sarcomas. Brain Pathology, 2022, 32, e13037.	4.1	11
3	A <i>CTNNB1</i> â€eltered medulloblastoma shows the immunophenotypic, DNA methylation and transcriptomic profiles of SHHâ€ectivated, and not WNTâ€ectivated, medulloblastoma. Neuropathology and Applied Neurobiology, 2022, 48, e12815.	3.2	0
4	The molecular characteristics of lowâ€grade and highâ€grade areas in desmoplastic infantile astrocytoma/ganglioglioma. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	5
5	Somatic LINE-1 promoter acquisition drives oncogenic FOXR2 activation in pediatric brain tumor. Acta Neuropathologica, 2022, 143, 605-607.	7.7	4
6	Intracranial mesenchymal tumor with FETâ€CREB fusion—A unifying diagnosis for the spectrum of intracranial myxoid mesenchymal tumors and angiomatoid fibrous histiocytomaâ€like neoplasms. Brain Pathology, 2021, 31, e12918.	4.1	44
7	Creation of a successful multidisciplinary course in pediatric neuroâ€oncology with a systematic approach to curriculum development. Cancer, 2021, 127, 1126-1133.	4.1	6
8	Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro-Oncology, 2021, 23, 999-1011.	1.2	63
9	Pediatric Case of Li–Fraumeni Syndrome in Honduras. Case Reports in Pediatrics, 2021, 2021, 1-4.	0.4	1
10	Radiohistogenomics of pediatric low-grade neuroepithelial tumors. Neuroradiology, 2021, 63, 1185-1213.	2.2	8
11	LGG-15. COMPREHENSIVE ANALYSIS OF MYB/MYB1-ALTERED GLIOMAS: A MULTI-INSTITUTIONAL EXPERIENCE OF 33 GLIOMAS. Neuro-Oncology, 2021, 23, i34-i35.	1.2	0
12	Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nature Communications, 2021, 12, 4089.	12.8	27
13	Abstract 237: Inferring spatial organization of tumor microenvironment from single-cell RNA sequencing data using graph embedding. , 2021, , .		0
14	Phase I study using crenolanib to target PDGFR kinase in children and young adults with newly diagnosed DIPG or recurrent high-grade glioma, including DIPG. Neuro-Oncology Advances, 2021, 3, vdab179.	0.7	5
15	YAP1-fusions in pediatric NF2-wildtype meningioma. Acta Neuropathologica, 2020, 139, 215-218.	7.7	45
16	Clinicopathologic and molecular features of intracranial desmoplastic small round cell tumors. Brain Pathology, 2020, 30, 213-225.	4.1	20
17	Tectal glioma harbors high rates of KRAS G12R and concomitant KRAS and BRAF alterations. Acta Neuropathologica, 2020, 139, 601-602.	7.7	13
18	Defining Optimal Target Volumes of Conformal Radiation Therapy for Diffuse Intrinsic Pontine Glioma. International Journal of Radiation Oncology Biology Physics, 2020, 106, 838-847.	0.8	7

#	Article	IF	CITATIONS
19	Infratentorial C11orf95-fused gliomas share histologic, immunophenotypic, and molecular characteristics of supratentorial RELA-fused ependymoma. Acta Neuropathologica, 2020, 140, 963-965.	7.7	14
20	Neuroimaging Findings in Children with Constitutional Mismatch Repair Deficiency Syndrome. American Journal of Neuroradiology, 2020, 41, 904-910.	2.4	2
21	A 4â€Yearâ€Old Girl With a Supratentorial Mass. Brain Pathology, 2020, 30, 421-422.	4.1	Ο
22	Risk stratification in pediatric low-grade glioma and glioneuronal tumor treated with radiation therapy: an integrated clinicopathologic and molecular analysis. Neuro-Oncology, 2020, 22, 1203-1213.	1.2	12
23	Clinical, imaging, and molecular analysis of pediatric pontine tumors lacking characteristic imaging features of DIPC. Acta Neuropathologica Communications, 2020, 8, 57.	5.2	32
24	Safety and efficacy of brainstem biopsy in children and young adults. Journal of Neurosurgery: Pediatrics, 2020, 26, 552-562.	1.3	16
25	High-grade neuroepithelial tumor with medulloepithelioma-like areas out of the central nervous system in an infant with hemihypertrophy: a unique association. Turkish Journal of Pediatrics, 2020, 62, 836.	0.6	Ο
26	Long-term visual acuity outcomes after radiation therapy for sporadic optic pathway glioma. Journal of Neuro-Oncology, 2019, 144, 603-610.	2.9	14
27	Evaluating pediatric spinal low-grade gliomas: a 30-year retrospective analysis. Journal of Neuro-Oncology, 2019, 145, 519-529.	2.9	11
28	A single-center study of the clinicopathologic correlates of gliomas with a MYB or MYBL1 alteration. Acta Neuropathologica, 2019, 138, 1091-1092.	7.7	45
29	Neuropsychological outcomes of patients with low-grade glioma diagnosed during the first year of life. Journal of Neuro-Oncology, 2019, 141, 413-420.	2.9	16
30	Chromosome arm 1q gain is an adverse prognostic factor in localized and diffuse leptomeningeal glioneuronal tumors with BRAF gene fusion and 1p deletion. Acta Neuropathologica, 2019, 137, 179-181.	7.7	10
31	Structure and evolution of double minutes in diagnosis and relapse brain tumors. Acta Neuropathologica, 2019, 137, 123-137.	7.7	63
32	Profound hearing loss following surgery in pediatric patients with posterior fossa low-grade glioma. Neuro-Oncology Practice, 2018, 5, 96-103.	1.6	2
33	Tectal glioma as a distinct diagnostic entity: a comprehensive clinical, imaging, histologic and molecular analysis. Acta Neuropathologica Communications, 2018, 6, 101.	5.2	30
34	Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathologica, 2018, 136, 239-253.	7.7	118
35	Low-grade spinal glioneuronal tumors with BRAF gene fusion and 1p deletion but without leptomeningeal dissemination. Acta Neuropathologica, 2017, 134, 159-162.	7.7	33
36	Molecular pathology of paediatric central nervous system tumours. Journal of Pathology, 2017, 241, 159-172.	4.5	51

CHENG-HSUAN CHIANG

#	Article	IF	CITATIONS
37	A 67 Yearâ€Old Man with Multiple Sclerosis and New Cerebellar Lesions. Brain Pathology, 2015, 25, 507-508.	4.1	1
38	Human Parechovirus 3 Meningitis and Fatal Leukoencephalopathy. Journal of Neuropathology and Experimental Neurology, 2015, 74, 767-777.	1.7	49
39	Inflammatory Reaction in Neurological Diseases. BioMed Research International, 2014, 2014, 1-2.	1.9	81
40	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	27.8	471
41	A11â€Induced pluripotent stem cells for basic and translational research on HD. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, A3.2-A4.	1.9	0
42	Induced Pluripotent Stem Cells from Patients with Huntington's Disease Show CAG-Repeat-Expansion-Associated Phenotypes. Cell Stem Cell, 2012, 11, 264-278.	11.1	444
43	Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington's disease patient cells. Molecular Brain, 2012, 5, 17.	2.6	204
44	Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Molecular Psychiatry, 2011, 16, 358-360.	7.9	163
45	G9a and Jhdm2a Regulate Embryonic Stem Cell Fusion-Induced Reprogramming of Adult Neural Stem Cells. Stem Cells, 2008, 26, 2131-2141.	3.2	112
46	Molecular mechanism of the neurotrophic effect of GDNF on DA neurons: role of protein kinase CK2. Neurobiology of Aging, 2006, 27, 105-118.	3.1	14